boost/interprocess/segment_manager.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP
#define BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/interprocess/detail/iterators.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/segment_manager_helper.hpp>
#include <boost/interprocess/detail/named_proxy.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/offset_ptr.hpp>
#include <boost/interprocess/indexes/iset_index.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <boost/interprocess/detail/move.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <cstddef> //std::size_t
#include <string> //char_traits
#include <new> //std::nothrow
#include <utility> //std::pair
#ifndef BOOST_NO_EXCEPTIONS
#include <exception>
#endif
//!\file
//!Describes the object placed in a memory segment that provides
//!named object allocation capabilities for single-segment and
//!multi-segment allocations.
namespace boost{
namespace interprocess{
//!This object is the public base class of segment manager.
//!This class only depends on the memory allocation algorithm
//!and implements all the allocation features not related
//!to named or unique objects.
//!
//!Storing a reference to segment_manager forces
//!the holder class to be dependent on index types and character types.
//!When such dependence is not desirable and only anonymous and raw
//!allocations are needed, segment_manager_base is the correct answer.
template<class MemoryAlgorithm>
class segment_manager_base
: private MemoryAlgorithm
{
public:
typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type;
typedef typename MemoryAlgorithm::void_pointer void_pointer;
typedef typename MemoryAlgorithm::mutex_family mutex_family;
typedef MemoryAlgorithm memory_algorithm;
/// @cond
//Experimental. Don't use
typedef typename MemoryAlgorithm::multiallocation_iterator multiallocation_iterator;
typedef typename MemoryAlgorithm::multiallocation_chain multiallocation_chain;
/// @endcond
//!This constant indicates the payload size
//!associated with each allocation of the memory algorithm
static const std::size_t PayloadPerAllocation = MemoryAlgorithm::PayloadPerAllocation;
//!Constructor of the segment_manager_base
//!
//!"size" is the size of the memory segment where
//!the basic segment manager is being constructed.
//!
//!"reserved_bytes" is the number of bytes
//!after the end of the memory algorithm object itself
//!that the memory algorithm will exclude from
//!dynamic allocation
//!
//!Can throw
segment_manager_base(std::size_t size, std::size_t reserved_bytes)
: MemoryAlgorithm(size, reserved_bytes)
{
assert((sizeof(segment_manager_base<MemoryAlgorithm>) == sizeof(MemoryAlgorithm)));
}
//!Returns the size of the memory
//!segment
std::size_t get_size() const
{ return MemoryAlgorithm::get_size(); }
//!Returns the number of free bytes of the memory
//!segment
std::size_t get_free_memory() const
{ return MemoryAlgorithm::get_free_memory(); }
//!Obtains the minimum size needed by
//!the segment manager
static std::size_t get_min_size (std::size_t size)
{ return MemoryAlgorithm::get_min_size(size); }
//!Allocates nbytes bytes. This function is only used in
//!single-segment management. Never throws
void * allocate (std::size_t nbytes, std::nothrow_t)
{ return MemoryAlgorithm::allocate(nbytes); }
/// @cond
//Experimental. Dont' use.
//!Allocates n_elements of
//!elem_size bytes. Throws bad_alloc on failure.
multiallocation_iterator allocate_many(std::size_t elem_bytes, std::size_t num_elements)
{
multiallocation_iterator ret = MemoryAlgorithm::allocate_many(elem_bytes, num_elements);
if(!ret) throw bad_alloc();
return ret;
}
//!Allocates n_elements, each one of
//!element_lenghts[i]*sizeof_element bytes. Throws bad_alloc on failure.
multiallocation_iterator allocate_many
(const std::size_t *element_lenghts, std::size_t n_elements, std::size_t sizeof_element = 1)
{
multiallocation_iterator ret = MemoryAlgorithm::allocate_many(element_lenghts, n_elements, sizeof_element);
if(!ret) throw bad_alloc();
return ret;
}
//!Allocates n_elements of
//!elem_size bytes. Returns a default constructed iterator on failure.
multiallocation_iterator allocate_many(std::size_t elem_bytes, std::size_t num_elements, std::nothrow_t)
{ return MemoryAlgorithm::allocate_many(elem_bytes, num_elements); }
//!Allocates n_elements, each one of
//!element_lenghts[i]*sizeof_element bytes.
//!Returns a default constructed iterator on failure.
multiallocation_iterator allocate_many(const std::size_t *elem_sizes, std::size_t n_elements, std::size_t sizeof_element, std::nothrow_t)
{ return MemoryAlgorithm::allocate_many(elem_sizes, n_elements, sizeof_element); }
//!Deallocates elements pointed by the
//!multiallocation iterator range.
void deallocate_many(multiallocation_iterator it)
{ MemoryAlgorithm::deallocate_many(it); }
/// @endcond
//!Allocates nbytes bytes. Throws boost::interprocess::bad_alloc
//!on failure
void * allocate(std::size_t nbytes)
{
void * ret = MemoryAlgorithm::allocate(nbytes);
if(!ret)
throw bad_alloc();
return ret;
}
//!Allocates nbytes bytes. This function is only used in
//!single-segment management. Never throws
void * allocate_aligned (std::size_t nbytes, std::size_t alignment, std::nothrow_t)
{ return MemoryAlgorithm::allocate_aligned(nbytes, alignment); }
//!Allocates nbytes bytes. This function is only used in
//!single-segment management. Throws bad_alloc when fails
void * allocate_aligned(std::size_t nbytes, std::size_t alignment)
{
void * ret = MemoryAlgorithm::allocate_aligned(nbytes, alignment);
if(!ret)
throw bad_alloc();
return ret;
}
template<class T>
std::pair<T *, bool>
allocation_command (allocation_type command, std::size_t limit_size,
std::size_t preferred_size,std::size_t &received_size,
T *reuse_ptr = 0)
{
std::pair<T *, bool> ret = MemoryAlgorithm::allocation_command
( command | nothrow_allocation, limit_size, preferred_size, received_size
, reuse_ptr);
if(!(command & nothrow_allocation) && !ret.first)
throw bad_alloc();
return ret;
}
std::pair<void *, bool>
raw_allocation_command (allocation_type command, std::size_t limit_objects,
std::size_t preferred_objects,std::size_t &received_objects,
void *reuse_ptr = 0, std::size_t sizeof_object = 1)
{
std::pair<void *, bool> ret = MemoryAlgorithm::raw_allocation_command
( command | nothrow_allocation, limit_objects, preferred_objects, received_objects
, reuse_ptr, sizeof_object);
if(!(command & nothrow_allocation) && !ret.first)
throw bad_alloc();
return ret;
}
//!Deallocates the bytes allocated with allocate/allocate_many()
//!pointed by addr
void deallocate (void *addr)
{ MemoryAlgorithm::deallocate(addr); }
//!Increases managed memory in extra_size bytes more. This only works
//!with single-segment management.
void grow(std::size_t extra_size)
{ MemoryAlgorithm::grow(extra_size); }
//!Decreases managed memory to the minimum. This only works
//!with single-segment management.
void shrink_to_fit()
{ MemoryAlgorithm::shrink_to_fit(); }
//!Returns the result of "all_memory_deallocated()" function
//!of the used memory algorithm
bool all_memory_deallocated()
{ return MemoryAlgorithm::all_memory_deallocated(); }
//!Returns the result of "check_sanity()" function
//!of the used memory algorithm
bool check_sanity()
{ return MemoryAlgorithm::check_sanity(); }
//!Writes to zero free memory (memory not yet allocated)
//!of the memory algorithm
void zero_free_memory()
{ MemoryAlgorithm::zero_free_memory(); }
//!Returns the size of the buffer previously allocated pointed by ptr
std::size_t size(const void *ptr) const
{ return MemoryAlgorithm::size(ptr); }
/// @cond
protected:
void * prot_anonymous_construct
(std::size_t num, bool dothrow, detail::in_place_interface &table)
{
typedef detail::block_header block_header_t;
block_header_t block_info ( table.size*num
, table.alignment
, anonymous_type
, 1
, 0);
//Allocate memory
void *ptr_struct = this->allocate(block_info.total_size(), std::nothrow_t());
//Check if there is enough memory
if(!ptr_struct){
if(dothrow){
throw bad_alloc();
}
else{
return 0;
}
}
//Build scoped ptr to avoid leaks with constructor exception
detail::mem_algo_deallocator<MemoryAlgorithm> mem(ptr_struct, *this);
//Now construct the header
block_header_t * hdr = new(ptr_struct) block_header_t(block_info);
void *ptr = 0; //avoid gcc warning
ptr = hdr->value();
//Now call constructors
detail::array_construct(ptr, num, table);
//All constructors successful, we don't want erase memory
mem.release();
return ptr;
}
//!Calls the destructor and makes an anonymous deallocate
void prot_anonymous_destroy(const void *object, detail::in_place_interface &table)
{
//Get control data from associated with this object
typedef detail::block_header block_header_t;
block_header_t *ctrl_data = block_header_t::block_header_from_value(object, table.size, table.alignment);
//-------------------------------
//scoped_lock<rmutex> guard(m_header);
//-------------------------------
if(ctrl_data->allocation_type() != anonymous_type){
//This is not an anonymous object, the pointer is wrong!
assert(0);
}
//Call destructors and free memory
//Build scoped ptr to avoid leaks with destructor exception
std::size_t destroyed = 0;
table.destroy_n(const_cast<void*>(object), ctrl_data->m_value_bytes/table.size, destroyed);
this->deallocate(ctrl_data);
}
/// @endcond
};
//These pointers are the ones the user will use to
//indicate previous allocation types
static const detail::anonymous_instance_t * anonymous_instance = 0;
static const detail::unique_instance_t * unique_instance = 0;
//!This object is placed in the beginning of memory segment and
//!implements the allocation (named or anonymous) of portions
//!of the segment. This object contains two indexes that
//!maintain an association between a name and a portion of the segment.
//!
//!The first index contains the mappings for normal named objects using the
//!char type specified in the template parameter.
//!
//!The second index contains the association for unique instances. The key will
//!be the const char * returned from type_info.name() function for the unique
//!type to be constructed.
//!
//!segment_manager<CharType, MemoryAlgorithm, IndexType> inherits publicly
//!from segment_manager_base<MemoryAlgorithm> and inherits from it
//!many public functions related to anonymous object and raw memory allocation.
//!See segment_manager_base reference to know about those functions.
template<class CharType
,class MemoryAlgorithm
,template<class IndexConfig> class IndexType>
class segment_manager
: public segment_manager_base<MemoryAlgorithm>
{
/// @cond
//Non-copyable
segment_manager();
segment_manager(const segment_manager &);
segment_manager &operator=(const segment_manager &);
typedef segment_manager_base<MemoryAlgorithm> Base;
typedef detail::block_header block_header_t;
/// @endcond
public:
typedef MemoryAlgorithm memory_algorithm;
typedef typename Base::void_pointer void_pointer;
typedef CharType char_type;
typedef typename Base::multiallocation_iterator multiallocation_iterator;
typedef segment_manager_base<MemoryAlgorithm> segment_manager_base_type;
static const std::size_t PayloadPerAllocation = Base::PayloadPerAllocation;
/// @cond
private:
typedef detail::index_config<CharType, MemoryAlgorithm> index_config_named;
typedef detail::index_config<char, MemoryAlgorithm> index_config_unique;
typedef IndexType<index_config_named> index_type;
typedef detail::bool_<is_intrusive_index<index_type>::value > is_intrusive_t;
typedef detail::bool_<is_node_index<index_type>::value> is_node_index_t;
public:
typedef IndexType<index_config_named> named_index_t;
typedef IndexType<index_config_unique> unique_index_t;
typedef detail::char_ptr_holder<CharType> char_ptr_holder_t;
typedef detail::segment_manager_iterator_transform
<typename named_index_t::const_iterator
,is_intrusive_index<index_type>::value> named_transform;
typedef detail::segment_manager_iterator_transform
<typename unique_index_t::const_iterator
,is_intrusive_index<index_type>::value> unique_transform;
/// @endcond
typedef typename Base::mutex_family mutex_family;
typedef transform_iterator
<typename named_index_t::const_iterator, named_transform> const_named_iterator;
typedef transform_iterator
<typename unique_index_t::const_iterator, unique_transform> const_unique_iterator;
/// @cond
//!Constructor proxy object definition helper class
template<class T>
struct construct_proxy
{
typedef detail::named_proxy<segment_manager, T, false> type;
};
//!Constructor proxy object definition helper class
template<class T>
struct construct_iter_proxy
{
typedef detail::named_proxy<segment_manager, T, true> type;
};
/// @endcond
//!Constructor of the segment manager
//!"size" is the size of the memory segment where
//!the segment manager is being constructed.
//!Can throw
segment_manager(std::size_t size)
: Base(size, priv_get_reserved_bytes())
, m_header(static_cast<Base*>(get_this_pointer()))
{
(void) anonymous_instance; (void) unique_instance;
assert(static_cast<const void*>(this) == static_cast<const void*>(static_cast<Base*>(this)));
}
//!Tries to find a previous named allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0.
template <class T>
std::pair<T*, std::size_t> find (const CharType* name)
{ return this->priv_find_impl<T>(name, true); }
//!Tries to find a previous unique allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0.
template <class T>
std::pair<T*, std::size_t> find (const detail::unique_instance_t* name)
{ return this->priv_find_impl<T>(name, true); }
//!Tries to find a previous named allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0. This search is not mutex-protected!
template <class T>
std::pair<T*, std::size_t> find_no_lock (const CharType* name)
{ return this->priv_find_impl<T>(name, false); }
//!Tries to find a previous unique allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0. This search is not mutex-protected!
template <class T>
std::pair<T*, std::size_t> find_no_lock (const detail::unique_instance_t* name)
{ return this->priv_find_impl<T>(name, false); }
//!Returns throwing "construct" proxy
//!object
template <class T>
typename construct_proxy<T>::type
construct(char_ptr_holder_t name)
{ return typename construct_proxy<T>::type (this, name, false, true); }
//!Returns throwing "search or construct" proxy
//!object
template <class T>
typename construct_proxy<T>::type find_or_construct(char_ptr_holder_t name)
{ return typename construct_proxy<T>::type (this, name, true, true); }
//!Returns no throwing "construct" proxy
//!object
template <class T>
typename construct_proxy<T>::type
construct(char_ptr_holder_t name, std::nothrow_t)
{ return typename construct_proxy<T>::type (this, name, false, false); }
//!Returns no throwing "search or construct"
//!proxy object
template <class T>
typename construct_proxy<T>::type
find_or_construct(char_ptr_holder_t name, std::nothrow_t)
{ return typename construct_proxy<T>::type (this, name, true, false); }
//!Returns throwing "construct from iterators" proxy object
template <class T>
typename construct_iter_proxy<T>::type
construct_it(char_ptr_holder_t name)
{ return typename construct_iter_proxy<T>::type (this, name, false, true); }
//!Returns throwing "search or construct from iterators"
//!proxy object
template <class T>
typename construct_iter_proxy<T>::type
find_or_construct_it(char_ptr_holder_t name)
{ return typename construct_iter_proxy<T>::type (this, name, true, true); }
//!Returns no throwing "construct from iterators"
//!proxy object
template <class T>
typename construct_iter_proxy<T>::type
construct_it(char_ptr_holder_t name, std::nothrow_t)
{ return typename construct_iter_proxy<T>::type (this, name, false, false); }
//!Returns no throwing "search or construct from iterators"
//!proxy object
template <class T>
typename construct_iter_proxy<T>::type
find_or_construct_it(char_ptr_holder_t name, std::nothrow_t)
{ return typename construct_iter_proxy<T>::type (this, name, true, false); }
//!Calls object function blocking recursive interprocess_mutex and guarantees that
//!no new named_alloc or destroy will be executed by any process while
//!executing the object function call*/
template <class Func>
void atomic_func(Func &f)
{ scoped_lock<rmutex> guard(m_header); f(); }
//!Destroys a previously created unique instance.
//!Returns false if the object was not present.
template <class T>
bool destroy(const detail::unique_instance_t *)
{
detail::placement_destroy<T> dtor;
return this->priv_generic_named_destroy<char>
(typeid(T).name(), m_header.m_unique_index, dtor, is_intrusive_t());
}
//!Destroys the named object with
//!the given name. Returns false if that object can't be found.
template <class T>
bool destroy(const CharType *name)
{
detail::placement_destroy<T> dtor;
return this->priv_generic_named_destroy<CharType>
(name, m_header.m_named_index, dtor, is_intrusive_t());
}
//!Destroys an anonymous, unique or named object
//!using it's address
template <class T>
void destroy_ptr(const T *p)
{
//If T is void transform it to char
typedef typename detail::char_if_void<T>::type data_t;
detail::placement_destroy<data_t> dtor;
priv_destroy_ptr(p, dtor);
}
//!Returns the name of an object created with construct/find_or_construct
//!functions. Does not throw
template<class T>
static const CharType *get_instance_name(const T *ptr)
{ return priv_get_instance_name(block_header_t::block_header_from_value(ptr)); }
//!Returns the length of an object created with construct/find_or_construct
//!functions. Does not throw.
template<class T>
static std::size_t get_instance_length(const T *ptr)
{ return priv_get_instance_length(block_header_t::block_header_from_value(ptr), sizeof(T)); }
//!Returns is the the name of an object created with construct/find_or_construct
//!functions. Does not throw
template<class T>
static instance_type get_instance_type(const T *ptr)
{ return priv_get_instance_type(block_header_t::block_header_from_value(ptr)); }
//!Preallocates needed index resources to optimize the
//!creation of "num" named objects in the managed memory segment.
//!Can throw boost::interprocess::bad_alloc if there is no enough memory.
void reserve_named_objects(std::size_t num)
{
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
m_header.m_named_index.reserve(num);
}
//!Preallocates needed index resources to optimize the
//!creation of "num" unique objects in the managed memory segment.
//!Can throw boost::interprocess::bad_alloc if there is no enough memory.
void reserve_unique_objects(std::size_t num)
{
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
m_header.m_unique_index.reserve(num);
}
//!Calls shrink_to_fit in both named and unique object indexes
//!to try to free unused memory from those indexes.
void shrink_to_fit_indexes()
{
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
m_header.m_named_index.shrink_to_fit();
m_header.m_unique_index.shrink_to_fit();
}
//!Returns the number of named objects stored in
//!the segment.
std::size_t get_num_named_objects()
{
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
return m_header.m_named_index.size();
}
//!Returns the number of unique objects stored in
//!the segment.
std::size_t get_num_unique_objects()
{
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
return m_header.m_unique_index.size();
}
//!Obtains the minimum size needed by the
//!segment manager
static std::size_t get_min_size()
{ return Base::get_min_size(priv_get_reserved_bytes()); }
//!Returns a constant iterator to the beginning of the information about
//!the named allocations performed in this segment manager
const_named_iterator named_begin() const
{
return make_transform_iterator
(m_header.m_named_index.begin(), named_transform());
}
//!Returns a constant iterator to the end of the information about
//!the named allocations performed in this segment manager
const_named_iterator named_end() const
{
return make_transform_iterator
(m_header.m_named_index.end(), named_transform());
}
//!Returns a constant iterator to the beginning of the information about
//!the unique allocations performed in this segment manager
const_unique_iterator unique_begin() const
{
return make_transform_iterator
(m_header.m_unique_index.begin(), unique_transform());
}
//!Returns a constant iterator to the end of the information about
//!the unique allocations performed in this segment manager
const_unique_iterator unique_end() const
{
return make_transform_iterator
(m_header.m_unique_index.end(), unique_transform());
}
//!This is the default allocator to allocate types T
//!from this managed segment
template<class T>
struct allocator
{
typedef boost::interprocess::allocator<T, segment_manager> type;
};
//!Returns an instance of the default allocator for type T
//!initialized that allocates memory from this segment manager.
template<class T>
typename allocator<T>::type
get_allocator()
{ return typename allocator<T>::type(this); }
//!This is the default deleter to delete types T
//!from this managed segment.
template<class T>
struct deleter
{
typedef boost::interprocess::deleter<T, segment_manager> type;
};
//!Returns an instance of the default allocator for type T
//!initialized that allocates memory from this segment manager.
template<class T>
typename deleter<T>::type
get_deleter()
{ return typename deleter<T>::type(this); }
/// @cond
//!Generic named/anonymous new function. Offers all the possibilities,
//!such as throwing, search before creating, and the constructor is
//!encapsulated in an object function.
template<class T>
T *generic_construct(const CharType *name,
std::size_t num,
bool try2find,
bool dothrow,
detail::in_place_interface &table)
{
return static_cast<T*>
(priv_generic_construct(name, num, try2find, dothrow, table));
}
private:
//!Tries to find a previous named allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0.
template <class T>
std::pair<T*, std::size_t> priv_find_impl (const CharType* name, bool lock)
{
//The name can't be null, no anonymous object can be found by name
assert(name != 0);
detail::placement_destroy<T> table;
std::size_t size;
void *ret;
if(name == reinterpret_cast<const CharType*>(-1)){
ret = priv_generic_find<char> (typeid(T).name(), m_header.m_unique_index, table, size, is_intrusive_t(), lock);
}
else{
ret = priv_generic_find<CharType> (name, m_header.m_named_index, table, size, is_intrusive_t(), lock);
}
return std::pair<T*, std::size_t>(static_cast<T*>(ret), size);
}
//!Tries to find a previous unique allocation. Returns the address
//!and the object count. On failure the first member of the
//!returned pair is 0.
template <class T>
std::pair<T*, std::size_t> priv_find__impl (const detail::unique_instance_t* name, bool lock)
{
detail::placement_destroy<T> table;
std::size_t size;
void *ret = priv_generic_find<char>(name, m_header.m_unique_index, table, size, is_intrusive_t(), lock);
return std::pair<T*, std::size_t>(static_cast<T*>(ret), size);
}
void *priv_generic_construct(const CharType *name,
std::size_t num,
bool try2find,
bool dothrow,
detail::in_place_interface &table)
{
void *ret;
//Security overflow check
if(num > ((std::size_t)-1)/table.size){
if(dothrow)
throw bad_alloc();
else
return 0;
}
if(name == 0){
ret = this->prot_anonymous_construct(num, dothrow, table);
}
else if(name == reinterpret_cast<const CharType*>(-1)){
ret = this->priv_generic_named_construct<char>
(unique_type, table.type_name, num, try2find, dothrow, table, m_header.m_unique_index, is_intrusive_t());
}
else{
ret = this->priv_generic_named_construct<CharType>
(named_type, name, num, try2find, dothrow, table, m_header.m_named_index, is_intrusive_t());
}
return ret;
}
void priv_destroy_ptr(const void *ptr, detail::in_place_interface &dtor)
{
block_header_t *ctrl_data = block_header_t::block_header_from_value(ptr, dtor.size, dtor.alignment);
switch(ctrl_data->allocation_type()){
case anonymous_type:
this->prot_anonymous_destroy(ptr, dtor);
break;
case named_type:
this->priv_generic_named_destroy<CharType>
(ctrl_data, m_header.m_named_index, dtor, is_node_index_t());
break;
case unique_type:
this->priv_generic_named_destroy<char>
(ctrl_data, m_header.m_unique_index, dtor, is_node_index_t());
break;
default:
//This type is unknown, bad pointer passed to this function!
assert(0);
break;
}
}
//!Returns the name of an object created with construct/find_or_construct
//!functions. Does not throw
static const CharType *priv_get_instance_name(block_header_t *ctrl_data)
{
allocation_type type = ctrl_data->allocation_type();
if(type != named_type){
assert((type == anonymous_type && ctrl_data->m_num_char == 0) ||
(type == unique_type && ctrl_data->m_num_char != 0) );
return 0;
}
CharType *name = static_cast<CharType*>(ctrl_data->template name<CharType>());
//Sanity checks
assert(ctrl_data->sizeof_char() == sizeof(CharType));
assert(ctrl_data->m_num_char == std::char_traits<CharType>::length(name));
return name;
}
static std::size_t priv_get_instance_length(block_header_t *ctrl_data, std::size_t sizeofvalue)
{
//Get header
assert((ctrl_data->value_bytes() %sizeofvalue) == 0);
return ctrl_data->value_bytes()/sizeofvalue;
}
//!Returns is the the name of an object created with construct/find_or_construct
//!functions. Does not throw
static instance_type priv_get_instance_type(block_header_t *ctrl_data)
{
//Get header
assert((instance_type)ctrl_data->allocation_type() < max_allocation_type);
return (instance_type)ctrl_data->allocation_type();
}
static std::size_t priv_get_reserved_bytes()
{
//Get the number of bytes until the end of (*this)
//beginning in the end of the Base base.
return sizeof(segment_manager) - sizeof(Base);
}
template <class CharT>
void *priv_generic_find
(const CharT* name,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
std::size_t &length,
detail::true_ is_intrusive,
bool use_lock)
{
(void)is_intrusive;
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef detail::index_key<CharT, void_pointer> index_key_t;
typedef typename index_type::iterator index_it;
//-------------------------------
scoped_lock<rmutex> guard(priv_get_lock(use_lock));
//-------------------------------
//Find name in index
detail::intrusive_compare_key<CharT> key
(name, std::char_traits<CharT>::length(name));
index_it it = index.find(key);
//Initialize return values
void *ret_ptr = 0;
length = 0;
//If found, assign values
if(it != index.end()){
//Get header
block_header_t *ctrl_data = it->get_block_header();
//Sanity check
assert((ctrl_data->m_value_bytes % table.size) == 0);
assert(ctrl_data->sizeof_char() == sizeof(CharT));
ret_ptr = ctrl_data->value();
length = ctrl_data->m_value_bytes/table.size;
}
return ret_ptr;
}
template <class CharT>
void *priv_generic_find
(const CharT* name,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
std::size_t &length,
detail::false_ is_intrusive,
bool use_lock)
{
(void)is_intrusive;
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef typename index_type::key_type key_type;
typedef typename index_type::iterator index_it;
//-------------------------------
scoped_lock<rmutex> guard(priv_get_lock(use_lock));
//-------------------------------
//Find name in index
index_it it = index.find(key_type(name, std::char_traits<CharT>::length(name)));
//Initialize return values
void *ret_ptr = 0;
length = 0;
//If found, assign values
if(it != index.end()){
//Get header
block_header_t *ctrl_data = reinterpret_cast<block_header_t*>
(detail::get_pointer(it->second.m_ptr));
//Sanity check
assert((ctrl_data->m_value_bytes % table.size) == 0);
assert(ctrl_data->sizeof_char() == sizeof(CharT));
ret_ptr = ctrl_data->value();
length = ctrl_data->m_value_bytes/table.size;
}
return ret_ptr;
}
template <class CharT>
bool priv_generic_named_destroy
(block_header_t *block_header,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
detail::true_ is_node_index)
{
(void)is_node_index;
typedef typename IndexType<detail::index_config<CharT, MemoryAlgorithm> >::iterator index_it;
index_it *ihdr = block_header_t::to_first_header<index_it>(block_header);
return this->priv_generic_named_destroy_impl<CharT>(*ihdr, index, table);
}
template <class CharT>
bool priv_generic_named_destroy
(block_header_t *block_header,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
detail::false_ is_node_index)
{
(void)is_node_index;
CharT *name = static_cast<CharT*>(block_header->template name<CharT>());
return this->priv_generic_named_destroy<CharT>(name, index, table, is_intrusive_t());
}
template <class CharT>
bool priv_generic_named_destroy(const CharT *name,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
detail::true_ is_intrusive_index)
{
(void)is_intrusive_index;
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef detail::index_key<CharT, void_pointer> index_key_t;
typedef typename index_type::iterator index_it;
typedef typename index_type::value_type intrusive_value_type;
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
//Find name in index
detail::intrusive_compare_key<CharT> key
(name, std::char_traits<CharT>::length(name));
index_it it = index.find(key);
//If not found, return false
if(it == index.end()){
//This name is not present in the index, wrong pointer or name!
//assert(0);
return false;
}
block_header_t *ctrl_data = it->get_block_header();
intrusive_value_type *iv = intrusive_value_type::get_intrusive_value_type(ctrl_data);
void *memory = iv;
void *values = ctrl_data->value();
std::size_t num = ctrl_data->m_value_bytes/table.size;
//Sanity check
assert((ctrl_data->m_value_bytes % table.size) == 0);
assert(sizeof(CharT) == ctrl_data->sizeof_char());
//Erase node from index
index.erase(it);
//Destroy the headers
ctrl_data->~block_header_t();
iv->~intrusive_value_type();
//Call destructors and free memory
std::size_t destroyed;
table.destroy_n(values, num, destroyed);
this->deallocate(memory);
return true;
}
template <class CharT>
bool priv_generic_named_destroy(const CharT *name,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table,
detail::false_ is_intrusive_index)
{
(void)is_intrusive_index;
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef typename index_type::iterator index_it;
typedef typename index_type::key_type key_type;
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
//Try to find the name in the index
index_it it = index.find(key_type (name,
std::char_traits<CharT>::length(name)));
//If not found, return false
if(it == index.end()){
//This name is not present in the index, wrong pointer or name!
assert(0);
return false;
}
return this->priv_generic_named_destroy_impl<CharT>(it, index, table);
}
template <class CharT>
bool priv_generic_named_destroy_impl
(const typename IndexType<detail::index_config<CharT, MemoryAlgorithm> >::iterator &it,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::in_place_interface &table)
{
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef typename index_type::iterator index_it;
//Get allocation parameters
block_header_t *ctrl_data = reinterpret_cast<block_header_t*>
(detail::get_pointer(it->second.m_ptr));
char *stored_name = static_cast<char*>(static_cast<void*>(const_cast<CharT*>(it->first.name())));
(void)stored_name;
//Check if the distance between the name pointer and the memory pointer
//is correct (this can detect incorrect type in destruction)
std::size_t num = ctrl_data->m_value_bytes/table.size;
void *values = ctrl_data->value();
//Sanity check
assert((ctrl_data->m_value_bytes % table.size) == 0);
assert(static_cast<void*>(stored_name) == static_cast<void*>(ctrl_data->template name<CharT>()));
assert(sizeof(CharT) == ctrl_data->sizeof_char());
//Erase node from index
index.erase(it);
//Destroy the header
ctrl_data->~block_header_t();
void *memory;
if(is_node_index_t::value){
index_it *ihdr = block_header_t::
to_first_header<index_it>(ctrl_data);
ihdr->~index_it();
memory = ihdr;
}
else{
memory = ctrl_data;
}
//Call destructors and free memory
std::size_t destroyed;
table.destroy_n(values, num, destroyed);
this->deallocate(memory);
return true;
}
template<class CharT>
void * priv_generic_named_construct(std::size_t type,
const CharT *name,
std::size_t num,
bool try2find,
bool dothrow,
detail::in_place_interface &table,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::true_ is_intrusive)
{
(void)is_intrusive;
std::size_t namelen = std::char_traits<CharT>::length(name);
block_header_t block_info ( table.size*num
, table.alignment
, type
, sizeof(CharT)
, namelen);
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef typename index_type::iterator index_it;
typedef std::pair<index_it, bool> index_ib;
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
//Insert the node. This can throw.
//First, we want to know if the key is already present before
//we allocate any memory, and if the key is not present, we
//want to allocate all memory in a single buffer that will
//contain the name and the user buffer.
//
//Since equal_range(key) + insert(hint, value) approach is
//quite inefficient in container implementations
//(they re-test if the position is correct), I've chosen
//to insert the node, do an ugly un-const cast and modify
//the key (which is a smart pointer) to an equivalent one
index_ib insert_ret;
typename index_type::insert_commit_data commit_data;
typedef typename index_type::value_type intrusive_value_type;
BOOST_TRY{
detail::intrusive_compare_key<CharT> key(name, namelen);
insert_ret = index.insert_check(key, commit_data);
}
//Ignore exceptions
BOOST_CATCH(...){
if(dothrow)
BOOST_RETHROW
return 0;
}
BOOST_CATCH_END
index_it it = insert_ret.first;
//If found and this is find or construct, return data
//else return null
if(!insert_ret.second){
if(try2find){
return it->get_block_header()->value();
}
if(dothrow){
throw interprocess_exception(already_exists_error);
}
else{
return 0;
}
}
//Allocates buffer for name + data, this can throw (it hurts)
void *buffer_ptr;
//Check if there is enough memory
if(dothrow){
buffer_ptr = this->allocate
(block_info.total_size_with_header<intrusive_value_type>());
}
else{
buffer_ptr = this->allocate
(block_info.total_size_with_header<intrusive_value_type>(), std::nothrow_t());
if(!buffer_ptr)
return 0;
}
//Now construct the intrusive hook plus the header
intrusive_value_type * intrusive_hdr = new(buffer_ptr) intrusive_value_type();
block_header_t * hdr = new(intrusive_hdr->get_block_header())block_header_t(block_info);
void *ptr = 0; //avoid gcc warning
ptr = hdr->value();
//Copy name to memory segment and insert data
CharT *name_ptr = static_cast<CharT *>(hdr->template name<CharT>());
std::char_traits<CharT>::copy(name_ptr, name, namelen+1);
BOOST_TRY{
//Now commit the insertion using previous context data
it = index.insert_commit(*intrusive_hdr, commit_data);
}
//Ignore exceptions
BOOST_CATCH(...){
if(dothrow)
BOOST_RETHROW
return 0;
}
BOOST_CATCH_END
//Avoid constructions if constructor is trivial
//Build scoped ptr to avoid leaks with constructor exception
detail::mem_algo_deallocator<segment_manager_base_type> mem
(buffer_ptr, *static_cast<segment_manager_base_type*>(this));
//Initialize the node value_eraser to erase inserted node
//if something goes wrong. This will be executed *before*
//the memory allocation as the intrusive value is built in that
//memory
value_eraser<index_type> v_eraser(index, it);
//Construct array, this can throw
detail::array_construct(ptr, num, table);
//Release rollbacks since construction was successful
v_eraser.release();
mem.release();
return ptr;
}
//!Generic named new function for
//!named functions
template<class CharT>
void * priv_generic_named_construct(std::size_t type,
const CharT *name,
std::size_t num,
bool try2find,
bool dothrow,
detail::in_place_interface &table,
IndexType<detail::index_config<CharT, MemoryAlgorithm> > &index,
detail::false_ is_intrusive)
{
(void)is_intrusive;
std::size_t namelen = std::char_traits<CharT>::length(name);
block_header_t block_info ( table.size*num
, table.alignment
, type
, sizeof(CharT)
, namelen);
typedef IndexType<detail::index_config<CharT, MemoryAlgorithm> > index_type;
typedef typename index_type::key_type key_type;
typedef typename index_type::mapped_type mapped_type;
typedef typename index_type::value_type value_type;
typedef typename index_type::iterator index_it;
typedef std::pair<index_it, bool> index_ib;
//-------------------------------
scoped_lock<rmutex> guard(m_header);
//-------------------------------
//Insert the node. This can throw.
//First, we want to know if the key is already present before
//we allocate any memory, and if the key is not present, we
//want to allocate all memory in a single buffer that will
//contain the name and the user buffer.
//
//Since equal_range(key) + insert(hint, value) approach is
//quite inefficient in container implementations
//(they re-test if the position is correct), I've chosen
//to insert the node, do an ugly un-const cast and modify
//the key (which is a smart pointer) to an equivalent one
index_ib insert_ret;
BOOST_TRY{
insert_ret = index.insert(value_type(key_type (name, namelen), mapped_type(0)));
}
//Ignore exceptions
BOOST_CATCH(...){
if(dothrow)
BOOST_RETHROW;
return 0;
}
BOOST_CATCH_END
index_it it = insert_ret.first;
//If found and this is find or construct, return data
//else return null
if(!insert_ret.second){
if(try2find){
block_header_t *hdr = static_cast<block_header_t*>
(detail::get_pointer(it->second.m_ptr));
return hdr->value();
}
return 0;
}
//Initialize the node value_eraser to erase inserted node
//if something goes wrong
value_eraser<index_type> v_eraser(index, it);
//Allocates buffer for name + data, this can throw (it hurts)
void *buffer_ptr;
block_header_t * hdr;
//Allocate and construct the headers
if(is_node_index_t::value){
std::size_t total_size = block_info.total_size_with_header<index_it>();
if(dothrow){
buffer_ptr = this->allocate(total_size);
}
else{
buffer_ptr = this->allocate(total_size, std::nothrow_t());
if(!buffer_ptr)
return 0;
}
index_it *idr = new(buffer_ptr) index_it(it);
hdr = block_header_t::from_first_header<index_it>(idr);
}
else{
if(dothrow){
buffer_ptr = this->allocate(block_info.total_size());
}
else{
buffer_ptr = this->allocate(block_info.total_size(), std::nothrow_t());
if(!buffer_ptr)
return 0;
}
hdr = static_cast<block_header_t*>(buffer_ptr);
}
hdr = new(hdr)block_header_t(block_info);
void *ptr = 0; //avoid gcc warning
ptr = hdr->value();
//Copy name to memory segment and insert data
CharT *name_ptr = static_cast<CharT *>(hdr->template name<CharT>());
std::char_traits<CharT>::copy(name_ptr, name, namelen+1);
//Do the ugly cast, please mama, forgive me!
//This new key points to an identical string, so it must have the
//same position than the overwritten key according to the predicate
const_cast<key_type &>(it->first).name(name_ptr);
it->second.m_ptr = hdr;
//Build scoped ptr to avoid leaks with constructor exception
detail::mem_algo_deallocator<segment_manager_base_type> mem
(buffer_ptr, *static_cast<segment_manager_base_type*>(this));
//Construct array, this can throw
detail::array_construct(ptr, num, table);
//All constructors successful, we don't want to release memory
mem.release();
//Release node v_eraser since construction was successful
v_eraser.release();
return ptr;
}
private:
//!Returns the this pointer
segment_manager *get_this_pointer()
{ return this; }
typedef typename MemoryAlgorithm::mutex_family::recursive_mutex_type rmutex;
#ifdef BOOST_INTERPROCESS_RVALUE_REFERENCE
scoped_lock<rmutex>
#else
detail::move_return<scoped_lock<rmutex> >
#endif
priv_get_lock(bool use_lock)
{
scoped_lock<rmutex> local(m_header, defer_lock);
if(use_lock){
local.lock();
}
return local;
}
//!This struct includes needed data and derives from
//!rmutex to allow EBO when using null interprocess_mutex
struct header_t
: public rmutex
{
named_index_t m_named_index;
unique_index_t m_unique_index;
header_t(Base *restricted_segment_mngr)
: m_named_index (restricted_segment_mngr)
, m_unique_index(restricted_segment_mngr)
{}
} m_header;
/// @endcond
};
}} //namespace boost { namespace interprocess
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_HPP