boost/intrusive/set.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Olaf Krzikalla 2004-2006.
// (C) Copyright Ion Gaztanaga 2006-2007
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_SET_HPP
#define BOOST_INTRUSIVE_SET_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/rbtree.hpp>
#include <iterator>
namespace boost {
namespace intrusive {
//! The class template set is an intrusive container, that mimics most of
//! the interface of std::set as described in the C++ standard.
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<>, \c size_type<> and
//! \c compare<>.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
class set_impl
{
/// @cond
typedef rbtree_impl<Config> tree_type;
//! This class is
//! non-copyable
set_impl (const set_impl&);
//! This class is
//! non-assignable
set_impl &operator =(const set_impl&);
typedef tree_type implementation_defined;
/// @endcond
public:
typedef typename implementation_defined::value_type value_type;
typedef typename implementation_defined::value_traits value_traits;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::key_compare key_compare;
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::reverse_iterator reverse_iterator;
typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator;
typedef typename implementation_defined::insert_commit_data insert_commit_data;
typedef typename implementation_defined::node_traits node_traits;
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_ptr node_ptr;
typedef typename implementation_defined::const_node_ptr const_node_ptr;
typedef typename implementation_defined::node_algorithms node_algorithms;
/// @cond
private:
tree_type tree_;
/// @endcond
public:
//! <b>Effects</b>: Constructs an empty set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor of the value_compare object throws.
set_impl( const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: tree_(cmp, v_traits)
{}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//! cmp must be a comparison function that induces a strict weak ordering.
//!
//! <b>Effects</b>: Constructs an empty set and inserts elements from
//! [b, e).
//!
//! <b>Complexity</b>: Linear in N if [b, e) is already sorted using
//! comp and otherwise N * log N, where N is std::distance(last, first).
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor/operator() of the value_compare object throws.
template<class Iterator>
set_impl( Iterator b, Iterator e
, const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: tree_(true, b, e, cmp, v_traits)
{}
//! <b>Effects</b>: Detaches all elements from this. The objects in the set
//! are not deleted (i.e. no destructors are called).
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
~set_impl()
{}
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator begin()
{ return tree_.begin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const
{ return tree_.begin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const
{ return tree_.cbegin(); }
//! <b>Effects</b>: Returns an iterator pointing to the end of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end()
{ return tree_.end(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const
{ return tree_.end(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const
{ return tree_.cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the
//! reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rbegin()
{ return tree_.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rbegin() const
{ return tree_.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crbegin() const
{ return tree_.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rend()
{ return tree_.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rend() const
{ return tree_.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crend() const
{ return tree_.crend(); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of set.
//!
//! <b>Effects</b>: Returns a reference to the set associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static set_impl &container_from_end_iterator(iterator end_iterator)
{
return *detail::parent_from_member<set_impl, tree_type>
( &tree_type::container_from_end_iterator(end_iterator)
, &set_impl::tree_);
}
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of set.
//!
//! <b>Effects</b>: Returns a const reference to the set associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const set_impl &container_from_end_iterator(const_iterator end_iterator)
{
return *detail::parent_from_member<set_impl, tree_type>
( &tree_type::container_from_end_iterator(end_iterator)
, &set_impl::tree_);
}
//! <b>Precondition</b>: it must be a valid iterator of set.
//!
//! <b>Effects</b>: Returns a reference to the set associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Logarithmic.
static set_impl &container_from_iterator(iterator it)
{
return *detail::parent_from_member<set_impl, tree_type>
( &tree_type::container_from_iterator(it)
, &set_impl::tree_);
}
//! <b>Precondition</b>: it must be a valid const_iterator of set.
//!
//! <b>Effects</b>: Returns a const reference to the set associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Logarithmic.
static const set_impl &container_from_iterator(const_iterator it)
{
return *detail::parent_from_member<set_impl, tree_type>
( &tree_type::container_from_iterator(it)
, &set_impl::tree_);
}
//! <b>Effects</b>: Returns the key_compare object used by the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If key_compare copy-constructor throws.
key_compare key_comp() const
{ return tree_.value_comp(); }
//! <b>Effects</b>: Returns the value_compare object used by the set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_compare copy-constructor throws.
value_compare value_comp() const
{ return tree_.value_comp(); }
//! <b>Effects</b>: Returns true is the container is empty.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const
{ return tree_.empty(); }
//! <b>Effects</b>: Returns the number of elements stored in the set.
//!
//! <b>Complexity</b>: Linear to elements contained in *this if,
//! constant-time size option is enabled. Constant-time otherwise.
//!
//! <b>Throws</b>: Nothing.
size_type size() const
{ return tree_.size(); }
//! <b>Effects</b>: Swaps the contents of two sets.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the swap() call for the comparison functor
//! found using ADL throws. Strong guarantee.
void swap(set_impl& other)
{ tree_.swap(other.tree_); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this. Copies the predicate from the source container.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws or predicate copy assignment throws. Basic guarantee.
template <class Cloner, class Disposer>
void clone_from(const set_impl &src, Cloner cloner, Disposer disposer)
{ tree_.clone_from(src.tree_, cloner, disposer); }
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Tries to inserts value into the set.
//!
//! <b>Returns</b>: If the value
//! is not already present inserts it and returns a pair containing the
//! iterator to the new value and true. If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
std::pair<iterator, bool> insert(reference value)
{ return tree_.insert_unique(value); }
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Tries to to insert x into the set, using "hint"
//! as a hint to where it will be inserted.
//!
//! <b>Returns</b>: An iterator that points to the position where the
//! new element was inserted into the set.
//!
//! <b>Complexity</b>: Logarithmic in general, but it's amortized
//! constant time if t is inserted immediately before hint.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert(const_iterator hint, reference value)
{ return tree_.insert_unique(hint, value); }
//! <b>Requires</b>: key_value_comp must be a comparison function that induces
//! the same strict weak ordering as value_compare. The difference is that
//! key_value_comp compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Checks if a value can be inserted in the set, using
//! a user provided key instead of the value itself.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false. If the value can be inserted returns true in the returned
//! pair boolean and fills "commit_data" that is meant to be used with
//! the "insert_commit" function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic.
//!
//! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a value_type is expensive: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the value_type and this function offers the possibility to use that
//! part to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the value_type and use
//! "insert_commit" to insert the object in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more
//! objects are inserted or erased from the set.
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_check
(const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{ return tree_.insert_unique_check(key, key_value_comp, commit_data); }
//! <b>Requires</b>: key_value_comp must be a comparison function that induces
//! the same strict weak ordering as value_compare. The difference is that
//! key_value_comp compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Checks if a value can be inserted in the set, using
//! a user provided key instead of the value itself, using "hint"
//! as a hint to where it will be inserted.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false. If the value can be inserted returns true in the returned
//! pair boolean and fills "commit_data" that is meant to be used with
//! the "insert_commit" function.
//!
//! <b>Complexity</b>: Logarithmic in general, but it's amortized
//! constant time if t is inserted immediately before hint.
//!
//! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a value_type is expensive: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! constructing that is used to impose the order is much cheaper to construct
//! than the value_type and this function offers the possibility to use that key
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the value_type and use
//! "insert_commit" to insert the object in constant-time. This can give a total
//! constant-time complexity to the insertion: check(O(1)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more
//! objects are inserted or erased from the set.
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_check
(const_iterator hint, const KeyType &key
,KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{ return tree_.insert_unique_check(hint, key, key_value_comp, commit_data); }
//! <b>Requires</b>: value must be an lvalue of type value_type. commit_data
//! must have been obtained from a previous call to "insert_check".
//! No objects should have been inserted or erased from the set between
//! the "insert_check" that filled "commit_data" and the call to "insert_commit".
//!
//! <b>Effects</b>: Inserts the value in the set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Returns</b>: An iterator to the newly inserted object.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
iterator insert_commit(reference value, const insert_commit_data &commit_data)
{ return tree_.insert_unique_commit(value, commit_data); }
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Inserts a range into the set.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert(Iterator b, Iterator e)
{ tree_.insert_unique(b, e); }
//! <b>Effects</b>: Erases the element pointed to by pos.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Returns</b>: An iterator to the element after the erased element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator i)
{ return tree_.erase(i); }
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Returns</b>: An iterator to the element after the erased elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator b, iterator e)
{ return tree_.erase(b, e); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size()) + this->count(value)).
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
size_type erase(const_reference value)
{ return tree_.erase(value); }
//! <b>Effects</b>: Erases all the elements that compare equal with
//! the given key and the given comparison functor.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(key, comp)).
//!
//! <b>Throws</b>: If the comp ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyValueCompare>
size_type erase(const KeyType& key, KeyValueCompare comp)
{ return tree_.erase(key, comp); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed to by pos.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Returns</b>: An iterator to the element after the erased element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
{ return tree_.erase_and_dispose(i, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Returns</b>: An iterator to the element after the erased elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer)
{ return tree_.erase_and_dispose(b, e, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given value.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
//!
//! <b>Complexity</b>: O(log(size() + this->count(value)). Basic guarantee.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
size_type erase_and_dispose(const_reference value, Disposer disposer)
{ return tree_.erase_and_dispose(value, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(key, comp)).
//!
//! <b>Throws</b>: If comp ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class KeyType, class KeyValueCompare, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer)
{ return tree_.erase_and_dispose(key, comp, disposer); }
//! <b>Effects</b>: Erases all the elements of the container.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear()
{ return tree_.clear(); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements of the container.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
void clear_and_dispose(Disposer disposer)
{ return tree_.clear_and_dispose(disposer); }
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
size_type count(const_reference value) const
{ return tree_.find(value) != end(); }
//! <b>Effects</b>: Returns the number of contained elements with the same key
//! compared with the given comparison functor.
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: If comp ordering function throws.
template<class KeyType, class KeyValueCompare>
size_type count(const KeyType& key, KeyValueCompare comp) const
{ return tree_.find(key, comp) != end(); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator lower_bound(const_reference value)
{ return tree_.lower_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key according to the comparison functor is not less than k or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator lower_bound(const KeyType& key, KeyValueCompare comp)
{ return tree_.lower_bound(key, comp); }
//! <b>Effects</b>: Returns a const iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator lower_bound(const_reference value) const
{ return tree_.lower_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns a const_iterator to the first element whose
//! key according to the comparison functor is not less than k or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const
{ return tree_.lower_bound(key, comp); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator upper_bound(const_reference value)
{ return tree_.upper_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key according to the comparison functor is greater than key or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator upper_bound(const KeyType& key, KeyValueCompare comp)
{ return tree_.upper_bound(key, comp); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator upper_bound(const_reference value) const
{ return tree_.upper_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns a const_iterator to the first element whose
//! key according to the comparison functor is greater than key or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const
{ return tree_.upper_bound(key, comp); }
//! <b>Effects</b>: Finds an iterator to the first element whose value is
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator find(const_reference value)
{ return tree_.find(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the comparison functor or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator find(const KeyType& key, KeyValueCompare comp)
{ return tree_.find(key, comp); }
//! <b>Effects</b>: Finds a const_iterator to the first element whose value is
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator find(const_reference value) const
{ return tree_.find(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! "key" according to the comparison functor or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator find(const KeyType& key, KeyValueCompare comp) const
{ return tree_.find(key, comp); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
std::pair<iterator,iterator> equal_range(const_reference value)
{ return tree_.equal_range(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a range containing all elements whose key is k
//! according to the comparison functor or an empty range
//! that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
std::pair<iterator,iterator> equal_range(const KeyType& key, KeyValueCompare comp)
{ return tree_.equal_range(key, comp); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
std::pair<const_iterator, const_iterator>
equal_range(const_reference value) const
{ return tree_.equal_range(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a range containing all elements whose key is k
//! according to the comparison functor or an empty range
//! that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
std::pair<const_iterator, const_iterator>
equal_range(const KeyType& key, KeyValueCompare comp) const
{ return tree_.equal_range(key, comp); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static iterator s_iterator_to(reference value)
{ return tree_type::s_iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static const_iterator s_iterator_to(const_reference value)
{ return tree_type::s_iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator iterator_to(reference value)
{ return tree_.iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator iterator_to(const_reference value) const
{ return tree_.iterator_to(value); }
//! <b>Requires</b>: value shall not be in a set/multiset.
//!
//! <b>Effects</b>: init_node puts the hook of a value in a well-known default
//! state.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This function puts the hook in the well-known default state
//! used by auto_unlink and safe hooks.
static void init_node(reference value)
{ tree_type::init_node(value); }
//! <b>Effects</b>: Unlinks the leftmost node from the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
pointer unlink_leftmost_without_rebalance()
{ return tree_.unlink_leftmost_without_rebalance(); }
//! <b>Requires</b>: replace_this must be a valid iterator of *this
//! and with_this must not be inserted in any tree.
//!
//! <b>Effects</b>: Replaces replace_this in its position in the
//! tree with with_this. The tree does not need to be rebalanced.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! with_this is not equivalent to *replace_this according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed.
void replace_node(iterator replace_this, reference with_this)
{ tree_.replace_node(replace_this, with_this); }
/// @cond
friend bool operator==(const set_impl &x, const set_impl &y)
{ return x.tree_ == y.tree_; }
friend bool operator<(const set_impl &x, const set_impl &y)
{ return x.tree_ < y.tree_; }
/// @endcond
};
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator!=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const set_impl<T, Options...> &x, const set_impl<T, Options...> &y)
#else
(const set_impl<Config> &x, const set_impl<Config> &y)
#endif
{ return !(x == y); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const set_impl<T, Options...> &x, const set_impl<T, Options...> &y)
#else
(const set_impl<Config> &x, const set_impl<Config> &y)
#endif
{ return y < x; }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator<=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const set_impl<T, Options...> &x, const set_impl<T, Options...> &y)
#else
(const set_impl<Config> &x, const set_impl<Config> &y)
#endif
{ return !(y < x); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const set_impl<T, Options...> &x, const set_impl<T, Options...> &y)
#else
(const set_impl<Config> &x, const set_impl<Config> &y)
#endif
{ return !(x < y); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline void swap
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(set_impl<T, Options...> &x, set_impl<T, Options...> &y)
#else
(set_impl<Config> &x, set_impl<Config> &y)
#endif
{ x.swap(y); }
//! Helper metafunction to define a \c set that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1 = none, class O2 = none
, class O3 = none, class O4 = none>
#endif
struct make_set
{
/// @cond
typedef set_impl
< typename make_rbtree_opt<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class O1, class O2, class O3, class O4>
#else
template<class T, class ...Options>
#endif
class set
: public make_set<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type
{
typedef typename make_set
<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type Base;
public:
typedef typename Base::value_compare value_compare;
typedef typename Base::value_traits value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename value_traits::value_type, T>::value));
set( const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(cmp, v_traits)
{}
template<class Iterator>
set( Iterator b, Iterator e
, const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(b, e, cmp, v_traits)
{}
static set &container_from_end_iterator(iterator end_iterator)
{ return static_cast<set &>(Base::container_from_end_iterator(end_iterator)); }
static const set &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const set &>(Base::container_from_end_iterator(end_iterator)); }
static set &container_from_iterator(iterator it)
{ return static_cast<set &>(Base::container_from_iterator(it)); }
static const set &container_from_iterator(const_iterator it)
{ return static_cast<const set &>(Base::container_from_iterator(it)); }
};
#endif
//! The class template multiset is an intrusive container, that mimics most of
//! the interface of std::multiset as described in the C++ standard.
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<>, \c size_type<> and
//! \c compare<>.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
class multiset_impl
{
/// @cond
typedef rbtree_impl<Config> tree_type;
//Non-copyable and non-assignable
multiset_impl (const multiset_impl&);
multiset_impl &operator =(const multiset_impl&);
typedef tree_type implementation_defined;
/// @endcond
public:
typedef typename implementation_defined::value_type value_type;
typedef typename implementation_defined::value_traits value_traits;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::key_compare key_compare;
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
typedef typename implementation_defined::reverse_iterator reverse_iterator;
typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator;
typedef typename implementation_defined::insert_commit_data insert_commit_data;
typedef typename implementation_defined::node_traits node_traits;
typedef typename implementation_defined::node node;
typedef typename implementation_defined::node_ptr node_ptr;
typedef typename implementation_defined::const_node_ptr const_node_ptr;
typedef typename implementation_defined::node_algorithms node_algorithms;
/// @cond
private:
tree_type tree_;
/// @endcond
public:
//! <b>Effects</b>: Constructs an empty multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor/operator() of the value_compare object throws.
multiset_impl( const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: tree_(cmp, v_traits)
{}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//! cmp must be a comparison function that induces a strict weak ordering.
//!
//! <b>Effects</b>: Constructs an empty multiset and inserts elements from
//! [b, e).
//!
//! <b>Complexity</b>: Linear in N if [b, e) is already sorted using
//! comp and otherwise N * log N, where N is the distance between first and last
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor/operator() of the value_compare object throws.
template<class Iterator>
multiset_impl( Iterator b, Iterator e
, const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: tree_(false, b, e, cmp, v_traits)
{}
//! <b>Effects</b>: Detaches all elements from this. The objects in the set
//! are not deleted (i.e. no destructors are called).
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
~multiset_impl()
{}
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator begin()
{ return tree_.begin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const
{ return tree_.begin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const
{ return tree_.cbegin(); }
//! <b>Effects</b>: Returns an iterator pointing to the end of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end()
{ return tree_.end(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const
{ return tree_.end(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const
{ return tree_.cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the
//! reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rbegin()
{ return tree_.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rbegin() const
{ return tree_.rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crbegin() const
{ return tree_.crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rend()
{ return tree_.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rend() const
{ return tree_.rend(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crend() const
{ return tree_.crend(); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of multiset.
//!
//! <b>Effects</b>: Returns a const reference to the multiset associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static multiset_impl &container_from_end_iterator(iterator end_iterator)
{
return *detail::parent_from_member<multiset_impl, tree_type>
( &tree_type::container_from_end_iterator(end_iterator)
, &multiset_impl::tree_);
}
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of multiset.
//!
//! <b>Effects</b>: Returns a const reference to the multiset associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const multiset_impl &container_from_end_iterator(const_iterator end_iterator)
{
return *detail::parent_from_member<multiset_impl, tree_type>
( &tree_type::container_from_end_iterator(end_iterator)
, &multiset_impl::tree_);
}
//! <b>Precondition</b>: it must be a valid iterator of multiset.
//!
//! <b>Effects</b>: Returns a const reference to the multiset associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static multiset_impl &container_from_iterator(iterator it)
{
return *detail::parent_from_member<multiset_impl, tree_type>
( &tree_type::container_from_iterator(it)
, &multiset_impl::tree_);
}
//! <b>Precondition</b>: it must be a valid const_iterator of multiset.
//!
//! <b>Effects</b>: Returns a const reference to the multiset associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const multiset_impl &container_from_iterator(const_iterator it)
{
return *detail::parent_from_member<multiset_impl, tree_type>
( &tree_type::container_from_iterator(it)
, &multiset_impl::tree_);
}
//! <b>Effects</b>: Returns the key_compare object used by the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If key_compare copy-constructor throws.
key_compare key_comp() const
{ return tree_.value_comp(); }
//! <b>Effects</b>: Returns the value_compare object used by the multiset.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_compare copy-constructor throws.
value_compare value_comp() const
{ return tree_.value_comp(); }
//! <b>Effects</b>: Returns true is the container is empty.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const
{ return tree_.empty(); }
//! <b>Effects</b>: Returns the number of elements stored in the multiset.
//!
//! <b>Complexity</b>: Linear to elements contained in *this if,
//! constant-time size option is enabled. Constant-time otherwise.
//!
//! <b>Throws</b>: Nothing.
size_type size() const
{ return tree_.size(); }
//! <b>Effects</b>: Swaps the contents of two multisets.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the swap() call for the comparison functor
//! found using ADL throws. Strong guarantee.
void swap(multiset_impl& other)
{ tree_.swap(other.tree_); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//! Cloner should yield to nodes equivalent to the original nodes.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this. Copies the predicate from the source container.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws or predicate copy assignment throws. Basic guarantee.
template <class Cloner, class Disposer>
void clone_from(const multiset_impl &src, Cloner cloner, Disposer disposer)
{ tree_.clone_from(src.tree_, cloner, disposer); }
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the multiset.
//!
//! <b>Returns</b>: An iterator that points to the position where the new
//! element was inserted.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert(reference value)
{ return tree_.insert_equal(value); }
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts x into the multiset, using pos as a hint to
//! where it will be inserted.
//!
//! <b>Returns</b>: An iterator that points to the position where the new
//! element was inserted.
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if t is inserted immediately before hint.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert(const_iterator hint, reference value)
{ return tree_.insert_equal(hint, value); }
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Inserts a range into the multiset.
//!
//! <b>Returns</b>: An iterator that points to the position where the new
//! element was inserted.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert(Iterator b, Iterator e)
{ tree_.insert_equal(b, e); }
//! <b>Effects</b>: Erases the element pointed to by pos.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Returns</b>: An iterator to the element after the erased element.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator i)
{ return tree_.erase(i); }
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Returns</b>: An iterator to the element after the erased elements.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator b, iterator e)
{ return tree_.erase(b, e); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(value)).
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
size_type erase(const_reference value)
{ return tree_.erase(value); }
//! <b>Effects</b>: Erases all the elements that compare equal with
//! the given key and the given comparison functor.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(key, comp)).
//!
//! <b>Throws</b>: If comp ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyValueCompare>
size_type erase(const KeyType& key, KeyValueCompare comp)
{ return tree_.erase(key, comp); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Returns</b>: An iterator to the element after the erased element.
//!
//! <b>Effects</b>: Erases the element pointed to by pos.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
{ return tree_.erase_and_dispose(i, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Returns</b>: An iterator to the element after the erased elements.
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer)
{ return tree_.erase_and_dispose(b, e, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given value.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(value)).
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
size_type erase_and_dispose(const_reference value, Disposer disposer)
{ return tree_.erase_and_dispose(value, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + this->count(key, comp)).
//!
//! <b>Throws</b>: If comp ordering function throws. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class KeyType, class KeyValueCompare, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer)
{ return tree_.erase_and_dispose(key, comp, disposer); }
//! <b>Effects</b>: Erases all the elements of the container.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear()
{ return tree_.clear(); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements of the container.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
void clear_and_dispose(Disposer disposer)
{ return tree_.clear_and_dispose(disposer); }
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
size_type count(const_reference value) const
{ return tree_.count(value); }
//! <b>Effects</b>: Returns the number of contained elements with the same key
//! compared with the given comparison functor.
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: If comp ordering function throws.
template<class KeyType, class KeyValueCompare>
size_type count(const KeyType& key, KeyValueCompare comp) const
{ return tree_.count(key, comp); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator lower_bound(const_reference value)
{ return tree_.lower_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key according to the comparison functor is not less than k or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator lower_bound(const KeyType& key, KeyValueCompare comp)
{ return tree_.lower_bound(key, comp); }
//! <b>Effects</b>: Returns a const iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator lower_bound(const_reference value) const
{ return tree_.lower_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns a const_iterator to the first element whose
//! key according to the comparison functor is not less than k or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const
{ return tree_.lower_bound(key, comp); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator upper_bound(const_reference value)
{ return tree_.upper_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key according to the comparison functor is greater than key or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator upper_bound(const KeyType& key, KeyValueCompare comp)
{ return tree_.upper_bound(key, comp); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator upper_bound(const_reference value) const
{ return tree_.upper_bound(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Returns a const_iterator to the first element whose
//! key according to the comparison functor is greater than key or
//! end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const
{ return tree_.upper_bound(key, comp); }
//! <b>Effects</b>: Finds an iterator to the first element whose value is
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
iterator find(const_reference value)
{ return tree_.find(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the comparison functor or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
iterator find(const KeyType& key, KeyValueCompare comp)
{ return tree_.find(key, comp); }
//! <b>Effects</b>: Finds a const_iterator to the first element whose value is
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
const_iterator find(const_reference value) const
{ return tree_.find(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! "key" according to the comparison functor or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
const_iterator find(const KeyType& key, KeyValueCompare comp) const
{ return tree_.find(key, comp); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
std::pair<iterator,iterator> equal_range(const_reference value)
{ return tree_.equal_range(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a range containing all elements whose key is k
//! according to the comparison functor or an empty range
//! that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
std::pair<iterator,iterator> equal_range(const KeyType& key, KeyValueCompare comp)
{ return tree_.equal_range(key, comp); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If the internal value_compare ordering function throws.
std::pair<const_iterator, const_iterator>
equal_range(const_reference value) const
{ return tree_.equal_range(value); }
//! <b>Requires</b>: comp must imply the same element order as
//! value_compare. Usually key is the part of the value_type
//! that is used in the ordering functor.
//!
//! <b>Effects</b>: Finds a range containing all elements whose key is k
//! according to the comparison functor or an empty range
//! that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If comp ordering function throws.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyValueCompare>
std::pair<const_iterator, const_iterator>
equal_range(const KeyType& key, KeyValueCompare comp) const
{ return tree_.equal_range(key, comp); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static iterator s_iterator_to(reference value)
{ return tree_type::s_iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static const_iterator s_iterator_to(const_reference value)
{ return tree_type::s_iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator iterator_to(reference value)
{ return tree_.iterator_to(value); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator iterator_to(const_reference value) const
{ return tree_.iterator_to(value); }
//! <b>Requires</b>: value shall not be in a set/multiset.
//!
//! <b>Effects</b>: init_node puts the hook of a value in a well-known default
//! state.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This function puts the hook in the well-known default state
//! used by auto_unlink and safe hooks.
static void init_node(reference value)
{ tree_type::init_node(value); }
//! <b>Effects</b>: Unlinks the leftmost node from the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
pointer unlink_leftmost_without_rebalance()
{ return tree_.unlink_leftmost_without_rebalance(); }
//! <b>Requires</b>: replace_this must be a valid iterator of *this
//! and with_this must not be inserted in any tree.
//!
//! <b>Effects</b>: Replaces replace_this in its position in the
//! tree with with_this. The tree does not need to be rebalanced.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! with_this is not equivalent to *replace_this according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed.
void replace_node(iterator replace_this, reference with_this)
{ tree_.replace_node(replace_this, with_this); }
//! <b>Effects</b>: removes "value" from the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Logarithmic time.
//!
//! <b>Note</b>: This static function is only usable with non-constant
//! time size containers that have stateless comparison functors.
//!
//! If the user calls
//! this function with a constant time size container or stateful comparison
//! functor a compilation error will be issued.
static void remove_node(reference value)
{ tree_type::remove_node(value); }
/// @cond
friend bool operator==(const multiset_impl &x, const multiset_impl &y)
{ return x.tree_ == y.tree_; }
friend bool operator<(const multiset_impl &x, const multiset_impl &y)
{ return x.tree_ < y.tree_; }
/// @endcond
};
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator!=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y)
#else
(const multiset_impl<Config> &x, const multiset_impl<Config> &y)
#endif
{ return !(x == y); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y)
#else
(const multiset_impl<Config> &x, const multiset_impl<Config> &y)
#endif
{ return y < x; }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator<=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y)
#else
(const multiset_impl<Config> &x, const multiset_impl<Config> &y)
#endif
{ return !(y < x); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>=
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(const multiset_impl<T, Options...> &x, const multiset_impl<T, Options...> &y)
#else
(const multiset_impl<Config> &x, const multiset_impl<Config> &y)
#endif
{ return !(x < y); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class Config>
#endif
inline void swap
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
(multiset_impl<T, Options...> &x, multiset_impl<T, Options...> &y)
#else
(multiset_impl<Config> &x, multiset_impl<Config> &y)
#endif
{ x.swap(y); }
//! Helper metafunction to define a \c multiset that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1 = none, class O2 = none
, class O3 = none, class O4 = none>
#endif
struct make_multiset
{
/// @cond
typedef multiset_impl
< typename make_rbtree_opt<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class O1, class O2, class O3, class O4>
#else
template<class T, class ...Options>
#endif
class multiset
: public make_multiset<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type
{
typedef typename make_multiset<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4
#else
Options...
#endif
>::type Base;
public:
typedef typename Base::value_compare value_compare;
typedef typename Base::value_traits value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename value_traits::value_type, T>::value));
multiset( const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(cmp, v_traits)
{}
template<class Iterator>
multiset( Iterator b, Iterator e
, const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(b, e, cmp, v_traits)
{}
static multiset &container_from_end_iterator(iterator end_iterator)
{ return static_cast<multiset &>(Base::container_from_end_iterator(end_iterator)); }
static const multiset &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const multiset &>(Base::container_from_end_iterator(end_iterator)); }
static multiset &container_from_iterator(iterator it)
{ return static_cast<multiset &>(Base::container_from_iterator(it)); }
static const multiset &container_from_iterator(const_iterator it)
{ return static_cast<const multiset &>(Base::container_from_iterator(it)); }
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_SET_HPP