boost/accumulators/numeric/functional/vector.hpp
///////////////////////////////////////////////////////////////////////////////
/// \file vector.hpp
///
// Copyright 2005 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_NUMERIC_FUNCTIONAL_VECTOR_HPP_EAN_12_12_2005
#define BOOST_NUMERIC_FUNCTIONAL_VECTOR_HPP_EAN_12_12_2005
#ifdef BOOST_NUMERIC_FUNCTIONAL_HPP_INCLUDED
# error Include this file before boost/accumulators/numeric/functional.hpp
#endif
#include <vector>
#include <functional>
#include <boost/assert.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/not.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_scalar.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/typeof/std/vector.hpp>
#include <boost/accumulators/numeric/functional_fwd.hpp>
namespace boost { namespace numeric
{
namespace operators
{
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> / Right where Right is a scalar.
template<typename Left, typename Right>
typename enable_if<
is_scalar<Right>
, std::vector<typename functional::divides<Left, Right>::result_type>
>::type
operator /(std::vector<Left> const &left, Right const &right)
{
typedef typename functional::divides<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::divides(left[i], right);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> / vector<Right>.
template<typename Left, typename Right>
std::vector<typename functional::divides<Left, Right>::result_type>
operator /(std::vector<Left> const &left, std::vector<Right> const &right)
{
typedef typename functional::divides<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::divides(left[i], right[i]);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> * Right where Right is a scalar.
template<typename Left, typename Right>
typename enable_if<
is_scalar<Right>
, std::vector<typename functional::multiplies<Left, Right>::result_type>
>::type
operator *(std::vector<Left> const &left, Right const &right)
{
typedef typename functional::multiplies<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::multiplies(left[i], right);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle Left * vector<Right> where Left is a scalar.
template<typename Left, typename Right>
typename enable_if<
is_scalar<Left>
, std::vector<typename functional::multiplies<Left, Right>::result_type>
>::type
operator *(Left const &left, std::vector<Right> const &right)
{
typedef typename functional::multiplies<Left, Right>::result_type value_type;
std::vector<value_type> result(right.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::multiplies(left, right[i]);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> * vector<Right>
template<typename Left, typename Right>
std::vector<typename functional::multiplies<Left, Right>::result_type>
operator *(std::vector<Left> const &left, std::vector<Right> const &right)
{
typedef typename functional::multiplies<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::multiplies(left[i], right[i]);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> + vector<Right>
template<typename Left, typename Right>
std::vector<typename functional::plus<Left, Right>::result_type>
operator +(std::vector<Left> const &left, std::vector<Right> const &right)
{
typedef typename functional::plus<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::plus(left[i], right[i]);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> - vector<Right>
template<typename Left, typename Right>
std::vector<typename functional::minus<Left, Right>::result_type>
operator -(std::vector<Left> const &left, std::vector<Right> const &right)
{
typedef typename functional::minus<Left, Right>::result_type value_type;
std::vector<value_type> result(left.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::minus(left[i], right[i]);
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
// Handle vector<Left> += vector<Left>
template<typename Left>
std::vector<Left> &
operator +=(std::vector<Left> &left, std::vector<Left> const &right)
{
BOOST_ASSERT(left.size() == right.size());
for(std::size_t i = 0, size = left.size(); i != size; ++i)
{
numeric::plus_assign(left[i], right[i]);
}
return left;
}
///////////////////////////////////////////////////////////////////////////////
// Handle -vector<Arg>
template<typename Arg>
std::vector<typename functional::unary_minus<Arg>::result_type>
operator -(std::vector<Arg> const &arg)
{
typedef typename functional::unary_minus<Arg>::result_type value_type;
std::vector<value_type> result(arg.size());
for(std::size_t i = 0, size = result.size(); i != size; ++i)
{
result[i] = numeric::unary_minus(arg[i]);
}
return result;
}
}
namespace functional
{
struct std_vector_tag;
template<typename T, typename Al>
struct tag<std::vector<T, Al> >
{
typedef std_vector_tag type;
};
///////////////////////////////////////////////////////////////////////////////
// element-wise min of std::vector
template<typename Left, typename Right>
struct min_assign<Left, Right, std_vector_tag, std_vector_tag>
: std::binary_function<Left, Right, void>
{
void operator ()(Left &left, Right &right) const
{
BOOST_ASSERT(left.size() == right.size());
for(std::size_t i = 0, size = left.size(); i != size; ++i)
{
if(numeric::less(right[i], left[i]))
{
left[i] = right[i];
}
}
}
};
///////////////////////////////////////////////////////////////////////////////
// element-wise max of std::vector
template<typename Left, typename Right>
struct max_assign<Left, Right, std_vector_tag, std_vector_tag>
: std::binary_function<Left, Right, void>
{
void operator ()(Left &left, Right &right) const
{
BOOST_ASSERT(left.size() == right.size());
for(std::size_t i = 0, size = left.size(); i != size; ++i)
{
if(numeric::greater(right[i], left[i]))
{
left[i] = right[i];
}
}
}
};
// partial specialization for std::vector.
template<typename Left, typename Right>
struct average<Left, Right, std_vector_tag, void>
: mpl::if_<
are_integral<typename Left::value_type, Right>
, divides<Left, double const>
, divides<Left, Right>
>::type
{};
// promote
template<typename To, typename From>
struct promote<To, From, std_vector_tag, std_vector_tag>
: std::unary_function<From, To>
{
To operator ()(From &arr) const
{
typename remove_const<To>::type res(arr.size());
for(std::size_t i = 0, size = arr.size(); i != size; ++i)
{
res[i] = numeric::promote<typename To::value_type>(arr[i]);
}
return res;
}
};
template<typename ToFrom>
struct promote<ToFrom, ToFrom, std_vector_tag, std_vector_tag>
: std::unary_function<ToFrom, ToFrom>
{
ToFrom &operator ()(ToFrom &tofrom) const
{
return tofrom;
}
};
///////////////////////////////////////////////////////////////////////////////
// functional::as_min
template<typename T>
struct as_min<T, std_vector_tag>
: std::unary_function<T, typename remove_const<T>::type>
{
typename remove_const<T>::type operator ()(T &arr) const
{
return 0 == arr.size()
? T()
: T(arr.size(), numeric::as_min(arr[0]));
}
};
///////////////////////////////////////////////////////////////////////////////
// functional::as_max
template<typename T>
struct as_max<T, std_vector_tag>
: std::unary_function<T, typename remove_const<T>::type>
{
typename remove_const<T>::type operator ()(T &arr) const
{
return 0 == arr.size()
? T()
: T(arr.size(), numeric::as_max(arr[0]));
}
};
///////////////////////////////////////////////////////////////////////////////
// functional::as_zero
template<typename T>
struct as_zero<T, std_vector_tag>
: std::unary_function<T, typename remove_const<T>::type>
{
typename remove_const<T>::type operator ()(T &arr) const
{
return 0 == arr.size()
? T()
: T(arr.size(), numeric::as_zero(arr[0]));
}
};
///////////////////////////////////////////////////////////////////////////////
// functional::as_one
template<typename T>
struct as_one<T, std_vector_tag>
: std::unary_function<T, typename remove_const<T>::type>
{
typename remove_const<T>::type operator ()(T &arr) const
{
return 0 == arr.size()
? T()
: T(arr.size(), numeric::as_one(arr[0]));
}
};
} // namespace functional
}} // namespace boost::numeric
#endif