boost/asio/basic_raw_socket.hpp
//
// basic_raw_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2010 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_RAW_SOCKET_HPP
#define BOOST_ASIO_BASIC_RAW_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/raw_socket_service.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides raw-oriented socket functionality.
/**
* The basic_raw_socket class template provides asynchronous and blocking
* raw-oriented socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Protocol,
typename RawSocketService = raw_socket_service<Protocol> >
class basic_raw_socket
: public basic_socket<Protocol, RawSocketService>
{
public:
/// The native representation of a socket.
typedef typename RawSocketService::native_type native_type;
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_raw_socket without opening it.
/**
* This constructor creates a raw socket without opening it. The open()
* function must be called before data can be sent or received on the socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*/
explicit basic_raw_socket(boost::asio::io_service& io_service)
: basic_socket<Protocol, RawSocketService>(io_service)
{
}
/// Construct and open a basic_raw_socket.
/**
* This constructor creates and opens a raw socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const protocol_type& protocol)
: basic_socket<Protocol, RawSocketService>(io_service, protocol)
{
}
/// Construct a basic_raw_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a raw socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param endpoint An endpoint on the local machine to which the raw
* socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const endpoint_type& endpoint)
: basic_socket<Protocol, RawSocketService>(io_service, endpoint)
{
}
/// Construct a basic_raw_socket on an existing native socket.
/**
* This constructor creates a raw socket object to hold an existing
* native socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const protocol_type& protocol, const native_type& native_socket)
: basic_socket<Protocol, RawSocketService>(
io_service, protocol, native_socket)
{
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code socket.send(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.send(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.send(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, flags, handler);
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.send_to(boost::asio::buffer(data, size), destination);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.send_to(this->implementation,
buffers, destination, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.async_send_to(
* boost::asio::buffer(data, size), destination, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination, 0,
handler);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination,
flags, handler);
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.receive(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.receive(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, flags, handler);
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* boost::asio::ip::udp::endpoint sender_endpoint;
* socket.receive_from(
* boost::asio::buffer(data, size), sender_endpoint);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.receive_from(this->implementation, buffers,
sender_endpoint, flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.async_receive_from(
* boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, 0, handler);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, flags, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_RAW_SOCKET_HPP