boost/graph/distributed/adjlist/redistribute.hpp
// Copyright (C) 2005-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
//
// Implements redistribution of vertices for a distributed adjacency
// list. This file should not be included by users. It will be
// included by the distributed adjacency list header.
//
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/pending/container_traits.hpp>
namespace boost { namespace detail { namespace parallel {
/* This structure contains a (vertex or edge) descriptor that is being
moved from one processor to another. It contains the properties for
that descriptor (if any).
*/
template<typename Descriptor, typename DescriptorProperty>
struct redistributed_descriptor : maybe_store_property<DescriptorProperty>
{
typedef maybe_store_property<DescriptorProperty> inherited;
redistributed_descriptor() { }
redistributed_descriptor(const Descriptor& v, const DescriptorProperty& p)
: inherited(p), descriptor(v) { }
Descriptor descriptor;
private:
friend class boost::serialization::access;
template<typename Archiver>
void serialize(Archiver& ar, unsigned int /*version*/)
{
ar & boost::serialization::base_object<inherited>(*this)
& unsafe_serialize(descriptor);
}
};
/* Predicate that returns true if the target has migrated. */
template<typename VertexProcessorMap, typename Graph>
struct target_migrated_t
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
target_migrated_t(VertexProcessorMap vertex_to_processor, const Graph& g)
: vertex_to_processor(vertex_to_processor), g(g) { }
bool operator()(Edge e) const
{
typedef global_descriptor<Vertex> DVertex;
processor_id_type owner = get(edge_target_processor_id, g, e);
return get(vertex_to_processor, DVertex(owner, target(e, g))) != owner;
}
private:
VertexProcessorMap vertex_to_processor;
const Graph& g;
};
template<typename VertexProcessorMap, typename Graph>
inline target_migrated_t<VertexProcessorMap, Graph>
target_migrated(VertexProcessorMap vertex_to_processor, const Graph& g)
{ return target_migrated_t<VertexProcessorMap, Graph>(vertex_to_processor, g); }
/* Predicate that returns true if the source of an in-edge has migrated. */
template<typename VertexProcessorMap, typename Graph>
struct source_migrated_t
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
source_migrated_t(VertexProcessorMap vertex_to_processor, const Graph& g)
: vertex_to_processor(vertex_to_processor), g(g) { }
bool operator()(stored_in_edge<Edge> e) const
{
return get(vertex_to_processor, DVertex(e.source_processor, source(e.e, g)))
!= e.source_processor;
}
private:
VertexProcessorMap vertex_to_processor;
const Graph& g;
};
template<typename VertexProcessorMap, typename Graph>
inline source_migrated_t<VertexProcessorMap, Graph>
source_migrated(VertexProcessorMap vertex_to_processor, const Graph& g)
{ return source_migrated_t<VertexProcessorMap, Graph>(vertex_to_processor, g); }
/* Predicate that returns true if the target has migrated. */
template<typename VertexProcessorMap, typename Graph>
struct source_or_target_migrated_t
{
typedef typename graph_traits<Graph>::edge_descriptor Edge;
source_or_target_migrated_t(VertexProcessorMap vertex_to_processor,
const Graph& g)
: vertex_to_processor(vertex_to_processor), g(g) { }
bool operator()(Edge e) const
{
return get(vertex_to_processor, source(e, g)) != source(e, g).owner
|| get(vertex_to_processor, target(e, g)) != target(e, g).owner;
}
private:
VertexProcessorMap vertex_to_processor;
const Graph& g;
};
template<typename VertexProcessorMap, typename Graph>
inline source_or_target_migrated_t<VertexProcessorMap, Graph>
source_or_target_migrated(VertexProcessorMap vertex_to_processor,
const Graph& g)
{
typedef source_or_target_migrated_t<VertexProcessorMap, Graph> result_type;
return result_type(vertex_to_processor, g);
}
} } // end of namespace detail::parallel
template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
template<typename VertexProcessorMap>
void
PBGL_DISTRIB_ADJLIST_TYPE
::request_in_neighbors(vertex_descriptor v,
VertexProcessorMap vertex_to_processor,
bidirectionalS)
{
BGL_FORALL_INEDGES_T(v, e, *this, graph_type)
request(vertex_to_processor, source(e, *this));
}
template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
template<typename VertexProcessorMap>
void
PBGL_DISTRIB_ADJLIST_TYPE
::remove_migrated_in_edges(vertex_descriptor v,
VertexProcessorMap vertex_to_processor,
bidirectionalS)
{
graph_detail::erase_if(get(vertex_in_edges, base())[v.local],
source_migrated(vertex_to_processor, base()));
}
template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
template<typename VertexProcessorMap>
void
PBGL_DISTRIB_ADJLIST_TYPE
::redistribute(VertexProcessorMap vertex_to_processor)
{
using boost::parallel::inplace_all_to_all;
// When we have stable descriptors, we only move those descriptors
// that actually need to be moved. Otherwise, we essentially have to
// regenerate the entire graph.
const bool has_stable_descriptors =
is_same<typename config_type::vertex_list_selector, listS>::value
|| is_same<typename config_type::vertex_list_selector, setS>::value
|| is_same<typename config_type::vertex_list_selector, multisetS>::value;
typedef detail::parallel::redistributed_descriptor<vertex_descriptor,
vertex_property_type>
redistributed_vertex;
typedef detail::parallel::redistributed_descriptor<edge_descriptor,
edge_property_type>
redistributed_edge;
typedef std::pair<vertices_size_type, edges_size_type> num_relocated_pair;
vertex_iterator vi, vi_end;
edge_iterator ei, ei_end;
process_group_type pg = process_group();
// Initial synchronization makes sure that we have all of our ducks
// in a row. We don't want any outstanding add/remove messages
// coming in mid-redistribution!
synchronize(process_group_);
// We cannot cope with eviction of ghost cells
vertex_to_processor.set_max_ghost_cells(0);
process_id_type p = num_processes(pg);
// Send vertices and edges to the processor where they will
// actually reside. This requires O(|V| + |E|) communication
std::vector<std::vector<redistributed_vertex> > redistributed_vertices(p);
std::vector<std::vector<redistributed_edge> > redistributed_edges(p);
// Build the sets of relocated vertices for each process and then do
// an all-to-all transfer.
for (boost::tie(vi, vi_end) = vertices(*this); vi != vi_end; ++vi) {
if (!has_stable_descriptors
|| get(vertex_to_processor, *vi) != vi->owner) {
redistributed_vertices[get(vertex_to_processor, *vi)]
.push_back(redistributed_vertex(*vi, get(vertex_all_t(), base(),
vi->local)));
}
// When our descriptors are stable, we need to determine which
// adjacent descriptors are stable to determine which edges will
// be removed.
if (has_stable_descriptors) {
BGL_FORALL_OUTEDGES_T(*vi, e, *this, graph_type)
request(vertex_to_processor, target(e, *this));
request_in_neighbors(*vi, vertex_to_processor, directed_selector());
}
}
inplace_all_to_all(pg, redistributed_vertices);
// If we have stable descriptors, we need to know where our neighbor
// vertices are moving.
if (has_stable_descriptors)
synchronize(vertex_to_processor);
// Build the sets of relocated edges for each process and then do
// an all-to-all transfer.
for (boost::tie(ei, ei_end) = edges(*this); ei != ei_end; ++ei) {
vertex_descriptor src = source(*ei, *this);
vertex_descriptor tgt = target(*ei, *this);
if (!has_stable_descriptors
|| get(vertex_to_processor, src) != src.owner
|| get(vertex_to_processor, tgt) != tgt.owner)
redistributed_edges[get(vertex_to_processor, source(*ei, *this))]
.push_back(redistributed_edge(*ei, get(edge_all_t(), base(),
ei->local)));
}
inplace_all_to_all(pg, redistributed_edges);
// A mapping from old vertex descriptors to new vertex
// descriptors. This is an STL map partly because I'm too lazy to
// build a real property map (which is hard in the general case) but
// also because it won't try to look in the graph itself, because
// the keys are all vertex descriptors that have been invalidated.
std::map<vertex_descriptor, vertex_descriptor> old_to_new_vertex_map;
if (has_stable_descriptors) {
// Clear out all vertices and edges that will have moved. There
// are several stages to this.
// First, eliminate all outgoing edges from the (local) vertices
// that have been moved or whose targets have been moved.
BGL_FORALL_VERTICES_T(v, *this, graph_type) {
if (get(vertex_to_processor, v) != v.owner) {
clear_out_edges(v.local, base());
clear_in_edges_local(v, directed_selector());
} else {
remove_out_edge_if(v.local,
target_migrated(vertex_to_processor, base()),
base());
remove_migrated_in_edges(v, vertex_to_processor, directed_selector());
}
}
// Next, eliminate locally-stored edges that have migrated (for
// undirected graphs).
graph_detail::erase_if(local_edges_,
source_or_target_migrated(vertex_to_processor, *this));
// Eliminate vertices that have migrated
for (boost::tie(vi, vi_end) = vertices(*this); vi != vi_end; /* in loop */) {
if (get(vertex_to_processor, *vi) != vi->owner)
remove_vertex((*vi++).local, base());
else {
// Add the identity relation for vertices that have not migrated
old_to_new_vertex_map[*vi] = *vi;
++vi;
}
}
} else {
// Clear out the local graph: the entire graph is in transit
clear();
}
// Add the new vertices to the graph. When we do so, update the old
// -> new vertex mapping both locally and for the owner of the "old"
// vertex.
{
typedef std::pair<vertex_descriptor, vertex_descriptor> mapping_pair;
std::vector<std::vector<mapping_pair> > mappings(p);
for (process_id_type src = 0; src < p; ++src) {
for (typename std::vector<redistributed_vertex>::iterator vi =
redistributed_vertices[src].begin();
vi != redistributed_vertices[src].end(); ++vi) {
vertex_descriptor new_vertex =
add_vertex(vi->get_property(), *this);
old_to_new_vertex_map[vi->descriptor] = new_vertex;
mappings[vi->descriptor.owner].push_back(mapping_pair(vi->descriptor,
new_vertex));
}
redistributed_vertices[src].clear();
}
inplace_all_to_all(pg, mappings);
// Add the mappings we were sent into the old->new map.
for (process_id_type src = 0; src < p; ++src)
old_to_new_vertex_map.insert(mappings[src].begin(), mappings[src].end());
}
// Get old->new vertex mappings for all of the vertices we need to
// know about.
// TBD: An optimization here might involve sending the
// request-response pairs without an explicit request step (for
// bidirectional and undirected graphs). However, it may not matter
// all that much given the cost of redistribution.
{
std::vector<std::vector<vertex_descriptor> > vertex_map_requests(p);
std::vector<std::vector<vertex_descriptor> > vertex_map_responses(p);
// We need to know about all of the vertices incident on edges
// that have been relocated to this processor. Tell each processor
// what each other processor needs to know.
for (process_id_type src = 0; src < p; ++src)
for (typename std::vector<redistributed_edge>::iterator ei =
redistributed_edges[src].begin();
ei != redistributed_edges[src].end(); ++ei) {
vertex_descriptor need_vertex = target(ei->descriptor, *this);
if (old_to_new_vertex_map.find(need_vertex)
== old_to_new_vertex_map.end())
{
old_to_new_vertex_map[need_vertex] = need_vertex;
vertex_map_requests[need_vertex.owner].push_back(need_vertex);
}
}
inplace_all_to_all(pg,
vertex_map_requests,
vertex_map_responses);
// Process the requests made for vertices we own. Then perform yet
// another all-to-all swap. This one matches the requests we've
// made to the responses we were given.
for (process_id_type src = 0; src < p; ++src)
for (typename std::vector<vertex_descriptor>::iterator vi =
vertex_map_responses[src].begin();
vi != vertex_map_responses[src].end(); ++vi)
*vi = old_to_new_vertex_map[*vi];
inplace_all_to_all(pg, vertex_map_responses);
// Matching the requests to the responses, update the old->new
// vertex map for all of the vertices we will need to know.
for (process_id_type src = 0; src < p; ++src) {
typedef typename std::vector<vertex_descriptor>::size_type size_type;
for (size_type i = 0; i < vertex_map_requests[src].size(); ++i) {
old_to_new_vertex_map[vertex_map_requests[src][i]] =
vertex_map_responses[src][i];
}
}
}
// Add edges to the graph by mapping the source and target.
for (process_id_type src = 0; src < p; ++src) {
for (typename std::vector<redistributed_edge>::iterator ei =
redistributed_edges[src].begin();
ei != redistributed_edges[src].end(); ++ei) {
add_edge(old_to_new_vertex_map[source(ei->descriptor, *this)],
old_to_new_vertex_map[target(ei->descriptor, *this)],
ei->get_property(),
*this);
}
redistributed_edges[src].clear();
}
// Be sure that edge-addition messages are received now, completing
// the graph.
synchronize(process_group_);
this->distribution().clear();
detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
get(vertex_index, base()));
}
} // end namespace boost