boost/asio/detail/impl/kqueue_reactor.ipp
//
// detail/impl/kqueue_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2011 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
#define BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/kqueue_reactor.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/push_options.hpp>
#if defined(__NetBSD__)
# define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
EV_SET(ev, ident, filt, flags, fflags, \
data, reinterpret_cast<intptr_t>(udata))
#else
# define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
EV_SET(ev, ident, filt, flags, fflags, data, udata)
#endif
namespace boost {
namespace asio {
namespace detail {
kqueue_reactor::kqueue_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<kqueue_reactor>(io_service),
io_service_(use_service<io_service_impl>(io_service)),
mutex_(),
kqueue_fd_(do_kqueue_create()),
interrupter_(),
shutdown_(false)
{
// The interrupter is put into a permanently readable state. Whenever we
// want to interrupt the blocked kevent call we register a one-shot read
// operation against the descriptor.
interrupter_.interrupt();
}
kqueue_reactor::~kqueue_reactor()
{
close(kqueue_fd_);
}
void kqueue_reactor::shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
while (descriptor_state* state = registered_descriptors_.first())
{
for (int i = 0; i < max_ops; ++i)
ops.push(state->op_queue_[i]);
state->shutdown_ = true;
registered_descriptors_.free(state);
}
timer_queues_.get_all_timers(ops);
}
void kqueue_reactor::init_task()
{
io_service_.init_task();
}
int kqueue_reactor::register_descriptor(socket_type,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
mutex::scoped_lock lock(registered_descriptors_mutex_);
descriptor_data = registered_descriptors_.alloc();
descriptor_data->shutdown_ = false;
return 0;
}
void kqueue_reactor::start_op(int op_type, socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data,
reactor_op* op, bool allow_speculative)
{
if (!descriptor_data)
{
op->ec_ = boost::asio::error::bad_descriptor;
post_immediate_completion(op);
return;
}
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
{
post_immediate_completion(op);
return;
}
bool first = descriptor_data->op_queue_[op_type].empty();
if (first)
{
if (allow_speculative)
{
if (op_type != read_op || descriptor_data->op_queue_[except_op].empty())
{
if (op->perform())
{
descriptor_lock.unlock();
io_service_.post_immediate_completion(op);
return;
}
}
}
}
descriptor_data->op_queue_[op_type].push(op);
io_service_.work_started();
if (first)
{
struct kevent event;
switch (op_type)
{
case read_op:
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case write_op:
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
break;
case except_op:
if (!descriptor_data->op_queue_[read_op].empty())
return; // Already registered for read events.
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[op_type].pop();
io_service_.post_deferred_completion(op);
}
}
}
void kqueue_reactor::cancel_ops(socket_type,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
io_service_.post_deferred_completions(ops);
}
void kqueue_reactor::close_descriptor(socket_type,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
if (!descriptor_data->shutdown_)
{
// Remove the descriptor from the set of known descriptors. The descriptor
// will be automatically removed from the kqueue set when it is closed.
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
registered_descriptors_.free(descriptor_data);
descriptor_data = 0;
descriptors_lock.unlock();
io_service_.post_deferred_completions(ops);
}
}
void kqueue_reactor::run(bool block, op_queue<operation>& ops)
{
mutex::scoped_lock lock(mutex_);
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
void* ptr = reinterpret_cast<void*>(events[i].udata);
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on one-shot notifications.
}
else
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
#if defined(__NetBSD__)
static const unsigned int filter[max_ops] =
#else
static const int filter[max_ops] =
#endif
{ EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events[i].filter == filter[j])
{
if (j != except_op || events[i].flags & EV_OOBAND)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
if (events[i].flags & EV_ERROR)
{
op->ec_ = boost::system::error_code(events[i].data,
boost::asio::error::get_system_category());
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
if (op->perform())
{
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
else
break;
}
}
}
}
// Renew registration for event notifications.
struct kevent event;
switch (events[i].filter)
{
case EVFILT_READ:
if (!descriptor_data->op_queue_[read_op].empty())
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else if (!descriptor_data->op_queue_[except_op].empty())
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_READ,
EV_ADD | EV_ONESHOT, EV_OOBAND, 0, descriptor_data);
else
continue;
case EVFILT_WRITE:
if (!descriptor_data->op_queue_[write_op].empty())
BOOST_ASIO_KQUEUE_EV_SET(&event, descriptor, EVFILT_WRITE,
EV_ADD | EV_ONESHOT, 0, 0, descriptor_data);
else
continue;
default:
break;
}
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
for (int j = 0; j < max_ops; ++j)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
op->ec_ = error;
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
}
}
}
}
lock.lock();
timer_queues_.get_ready_timers(ops);
}
void kqueue_reactor::interrupt()
{
struct kevent event;
BOOST_ASIO_KQUEUE_EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, &interrupter_);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
int kqueue_reactor::do_kqueue_create()
{
int fd = ::kqueue();
if (fd == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "kqueue");
}
return fd;
}
void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
timespec* kqueue_reactor::get_timeout(timespec& ts)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.tv_sec = usec / 1000000;
ts.tv_nsec = (usec % 1000000) * 1000;
return &ts;
}
} // namespace detail
} // namespace asio
} // namespace boost
#undef BOOST_ASIO_KQUEUE_EV_SET
#include <boost/asio/detail/pop_options.hpp>
#endif // defined(BOOST_ASIO_HAS_KQUEUE)
#endif // BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP