boost/random/uniform_smallint.hpp
/* boost random/uniform_smallint.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: uniform_smallint.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
* Revision history
* 2001-04-08 added min<max assertion (N. Becker)
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_UNIFORM_SMALLINT_HPP
#define BOOST_RANDOM_UNIFORM_SMALLINT_HPP
#include <cassert>
#include <iostream>
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/detail/workaround.hpp>
namespace boost {
// uniform integer distribution on a small range [min, max]
/**
* The distribution function uniform_smallint models a \random_distribution.
* On each invocation, it returns a random integer value uniformly distributed
* in the set of integer numbers {min, min+1, min+2, ..., max}. It assumes
* that the desired range (max-min+1) is small compared to the range of the
* underlying source of random numbers and thus makes no attempt to limit
* quantization errors.
*
* Let r<sub>out</sub>=(max-min+1) the desired range of integer numbers, and
* let r<sub>base</sub> be the range of the underlying source of random
* numbers. Then, for the uniform distribution, the theoretical probability
* for any number i in the range r<sub>out</sub> will be p<sub>out</sub>(i) =
* 1/r<sub>out</sub>. Likewise, assume a uniform distribution on r<sub>base</sub> for
* the underlying source of random numbers, i.e. p<sub>base</sub>(i) =
* 1/r<sub>base</sub>. Let p<sub>out_s</sub>(i) denote the random
* distribution generated by @c uniform_smallint. Then the sum over all
* i in r<sub>out</sub> of (p<sub>out_s</sub>(i)/p<sub>out</sub>(i) - 1)<sup>2</sup>
* shall not exceed r<sub>out</sub>/r<sub>base</sub><sup>2</sup>
* (r<sub>base</sub> mod r<sub>out</sub>)(r<sub>out</sub> -
* r<sub>base</sub> mod r<sub>out</sub>).
*
* The template parameter IntType shall denote an integer-like value type.
*
* Note: The property above is the square sum of the relative differences
* in probabilities between the desired uniform distribution
* p<sub>out</sub>(i) and the generated distribution p<sub>out_s</sub>(i).
* The property can be fulfilled with the calculation
* (base_rng mod r<sub>out</sub>), as follows: Let r = r<sub>base</sub> mod
* r<sub>out</sub>. The base distribution on r<sub>base</sub> is folded onto the
* range r<sub>out</sub>. The numbers i < r have assigned (r<sub>base</sub>
* div r<sub>out</sub>)+1 numbers of the base distribution, the rest has
* only (r<sub>base</sub> div r<sub>out</sub>). Therefore,
* p<sub>out_s</sub>(i) = ((r<sub>base</sub> div r<sub>out</sub>)+1) /
* r<sub>base</sub> for i < r and p<sub>out_s</sub>(i) = (r<sub>base</sub>
* div r<sub>out</sub>)/r<sub>base</sub> otherwise. Substituting this in the
* above sum formula leads to the desired result.
*
* Note: The upper bound for (r<sub>base</sub> mod r<sub>out</sub>)
* (r<sub>out</sub> - r<sub>base</sub> mod r<sub>out</sub>) is
* r<sub>out</sub><sup>2</sup>/4. Regarding the upper bound for the
* square sum of the relative quantization error of
* r<sub>out</sub><sup>3</sup>/(4*r<sub>base</sub><sup>2</sup>), it
* seems wise to either choose r<sub>base</sub> so that r<sub>base</sub> >
* 10*r<sub>out</sub><sup>2</sup> or ensure that r<sub>base</sub> is
* divisible by r<sub>out</sub>.
*/
template<class IntType = int>
class uniform_smallint
{
public:
typedef IntType input_type;
typedef IntType result_type;
/**
* Constructs a @c uniform_smallint. @c min and @c max are the
* lower and upper bounds of the output range, respectively.
*/
explicit uniform_smallint(IntType min_arg = 0, IntType max_arg = 9)
: _min(min_arg), _max(max_arg)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
// MSVC fails BOOST_STATIC_ASSERT with std::numeric_limits at class scope
BOOST_STATIC_ASSERT(std::numeric_limits<IntType>::is_integer);
#endif
}
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; }
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; }
void reset() { }
template<class Engine>
result_type operator()(Engine& eng)
{
typedef typename Engine::result_type base_result;
base_result _range = static_cast<base_result>(_max-_min)+1;
base_result _factor = 1;
// LCGs get bad when only taking the low bits.
// (probably put this logic into a partial template specialization)
// Check how many low bits we can ignore before we get too much
// quantization error.
base_result r_base = (eng.max)() - (eng.min)();
if(r_base == (std::numeric_limits<base_result>::max)()) {
_factor = 2;
r_base /= 2;
}
r_base += 1;
if(r_base % _range == 0) {
// No quantization effects, good
_factor = r_base / _range;
} else {
// carefully avoid overflow; pessimizing here
for( ; r_base/_range/32 >= _range; _factor *= 2)
r_base /= 2;
}
return static_cast<result_type>(((eng() - (eng.min)()) / _factor) % _range + _min);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, const uniform_smallint& ud)
{
os << ud._min << " " << ud._max;
return os;
}
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, uniform_smallint& ud)
{
is >> std::ws >> ud._min >> std::ws >> ud._max;
return is;
}
#endif
private:
result_type _min;
result_type _max;
};
} // namespace boost
#endif // BOOST_RANDOM_UNIFORM_SMALLINT_HPP