boost/lexical_cast.hpp
#ifndef BOOST_LEXICAL_CAST_INCLUDED
#define BOOST_LEXICAL_CAST_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
// Boost lexical_cast.hpp header -------------------------------------------//
//
// See http://www.boost.org/libs/conversion for documentation.
// See end of this header for rights and permissions.
//
// what: lexical_cast custom keyword cast
// who: contributed by Kevlin Henney,
// enhanced with contributions from Terje Slettebo,
// with additional fixes and suggestions from Gennaro Prota,
// Beman Dawes, Dave Abrahams, Daryle Walker, Peter Dimov,
// Alexander Nasonov, Antony Polukhin and other Boosters
// when: November 2000, March 2003, June 2005, June 2006, March 2011
#include <climits>
#include <cstddef>
#include <istream>
#include <string>
#include <cstring>
#include <cstdio>
#include <typeinfo>
#include <exception>
#include <cmath>
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/throw_exception.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/remove_pointer.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/type_traits/ice.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/type_traits/is_signed.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/lcast_precision.hpp>
#include <boost/detail/workaround.hpp>
#include <cwchar>
#ifndef BOOST_NO_STD_LOCALE
# include <locale>
#else
# ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
# warning "Unable to use <locale> header. boost::lexical_cast will use the 'C' locale."
# define BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
# endif
#endif
#ifdef BOOST_NO_STRINGSTREAM
#include <strstream>
#else
#include <sstream>
#endif
#if defined(BOOST_NO_STRINGSTREAM) || defined(BOOST_NO_STD_WSTRING)
#define BOOST_LCAST_NO_WCHAR_T
#endif
#ifdef BOOST_NO_TYPEID
#define BOOST_LCAST_THROW_BAD_CAST(S, T) throw_exception(bad_lexical_cast())
#else
#define BOOST_LCAST_THROW_BAD_CAST(Source, Target) \
throw_exception(bad_lexical_cast(typeid(Source), typeid(Target)))
#endif
namespace boost
{
// exception used to indicate runtime lexical_cast failure
class bad_lexical_cast :
// workaround MSVC bug with std::bad_cast when _HAS_EXCEPTIONS == 0
#if defined(BOOST_MSVC) && defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS
public std::exception
#else
public std::bad_cast
#endif
#if defined(__BORLANDC__) && BOOST_WORKAROUND( __BORLANDC__, < 0x560 )
// under bcc32 5.5.1 bad_cast doesn't derive from exception
, public std::exception
#endif
{
public:
bad_lexical_cast() :
#ifndef BOOST_NO_TYPEID
source(&typeid(void)), target(&typeid(void))
#else
source(0), target(0) // this breaks getters
#endif
{
}
bad_lexical_cast(
const std::type_info &source_type_arg,
const std::type_info &target_type_arg) :
source(&source_type_arg), target(&target_type_arg)
{
}
const std::type_info &source_type() const
{
return *source;
}
const std::type_info &target_type() const
{
return *target;
}
virtual const char *what() const throw()
{
return "bad lexical cast: "
"source type value could not be interpreted as target";
}
virtual ~bad_lexical_cast() throw()
{
}
private:
const std::type_info *source;
const std::type_info *target;
};
namespace detail // selectors for choosing stream character type
{
template<typename Type>
struct stream_char
{
typedef char type;
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class CharT, class Traits, class Alloc>
struct stream_char< std::basic_string<CharT,Traits,Alloc> >
{
typedef CharT type;
};
#endif
#ifndef BOOST_LCAST_NO_WCHAR_T
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
template<>
struct stream_char<wchar_t>
{
typedef wchar_t type;
};
#endif
template<>
struct stream_char<wchar_t *>
{
typedef wchar_t type;
};
template<>
struct stream_char<const wchar_t *>
{
typedef wchar_t type;
};
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<>
struct stream_char<std::wstring>
{
typedef wchar_t type;
};
#endif
#endif
#ifndef BOOST_NO_CHAR16_T
template<>
struct stream_char<char16_t>
{
typedef char16_t type;
};
template<>
struct stream_char<char16_t *>
{
typedef char16_t type;
};
template<>
struct stream_char<const char16_t *>
{
typedef char16_t type;
};
#endif
#ifndef BOOST_NO_CHAR32_T
template<>
struct stream_char<char32_t>
{
typedef char32_t type;
};
template<>
struct stream_char<char32_t *>
{
typedef char32_t type;
};
template<>
struct stream_char<const char32_t *>
{
typedef char32_t type;
};
#endif
template<typename TargetChar, typename SourceChar>
struct widest_char
{
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
(sizeof(TargetChar) > sizeof(SourceChar))
, TargetChar
, SourceChar >::type type;
};
}
namespace detail // deduce_char_traits template
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class CharT, class Target, class Source>
struct deduce_char_traits
{
typedef std::char_traits<CharT> type;
};
template<class CharT, class Traits, class Alloc, class Source>
struct deduce_char_traits< CharT
, std::basic_string<CharT,Traits,Alloc>
, Source
>
{
typedef Traits type;
};
template<class CharT, class Target, class Traits, class Alloc>
struct deduce_char_traits< CharT
, Target
, std::basic_string<CharT,Traits,Alloc>
>
{
typedef Traits type;
};
template<class CharT, class Traits, class Alloc1, class Alloc2>
struct deduce_char_traits< CharT
, std::basic_string<CharT,Traits,Alloc1>
, std::basic_string<CharT,Traits,Alloc2>
>
{
typedef Traits type;
};
#endif
}
namespace detail // lcast_src_length
{
// Return max. length of string representation of Source;
template< class Source // Source type of lexical_cast.
>
struct lcast_src_length
{
BOOST_STATIC_CONSTANT(std::size_t, value = 1);
// To check coverage, build the test with
// bjam --v2 profile optimization=off
static void check_coverage() {}
};
// Helper for integral types.
// Notes on length calculation:
// Max length for 32bit int with grouping "\1" and thousands_sep ',':
// "-2,1,4,7,4,8,3,6,4,7"
// ^ - is_signed
// ^ - 1 digit not counted by digits10
// ^^^^^^^^^^^^^^^^^^ - digits10 * 2
//
// Constant is_specialized is used instead of constant 1
// to prevent buffer overflow in a rare case when
// <boost/limits.hpp> doesn't add missing specialization for
// numeric_limits<T> for some integral type T.
// When is_specialized is false, the whole expression is 0.
template<class Source>
struct lcast_src_length_integral
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_CONSTANT(std::size_t, value =
std::numeric_limits<Source>::is_signed +
std::numeric_limits<Source>::is_specialized + /* == 1 */
std::numeric_limits<Source>::digits10 * 2
);
#else
BOOST_STATIC_CONSTANT(std::size_t, value = 156);
BOOST_STATIC_ASSERT(sizeof(Source) * CHAR_BIT <= 256);
#endif
};
// TODO: FIX for char16_t, char32_t, we can ignore CharT
#define BOOST_LCAST_DEF(T) \
template<> struct lcast_src_length<T> \
: lcast_src_length_integral<T> \
{ static void check_coverage() {} };
BOOST_LCAST_DEF(short)
BOOST_LCAST_DEF(unsigned short)
BOOST_LCAST_DEF(int)
BOOST_LCAST_DEF(unsigned int)
BOOST_LCAST_DEF(long)
BOOST_LCAST_DEF(unsigned long)
#if defined(BOOST_HAS_LONG_LONG)
BOOST_LCAST_DEF(boost::ulong_long_type)
BOOST_LCAST_DEF(boost::long_long_type )
#elif defined(BOOST_HAS_MS_INT64)
BOOST_LCAST_DEF(unsigned __int64)
BOOST_LCAST_DEF( __int64)
#endif
#undef BOOST_LCAST_DEF
#ifndef BOOST_LCAST_NO_COMPILE_TIME_PRECISION
// Helper for floating point types.
// -1.23456789e-123456
// ^ sign
// ^ leading digit
// ^ decimal point
// ^^^^^^^^ lcast_precision<Source>::value
// ^ "e"
// ^ exponent sign
// ^^^^^^ exponent (assumed 6 or less digits)
// sign + leading digit + decimal point + "e" + exponent sign == 5
template<class Source>
struct lcast_src_length_floating
{
BOOST_STATIC_ASSERT(
std::numeric_limits<Source>::max_exponent10 <= 999999L &&
std::numeric_limits<Source>::min_exponent10 >= -999999L
);
BOOST_STATIC_CONSTANT(std::size_t, value =
5 + lcast_precision<Source>::value + 6
);
};
template<>
struct lcast_src_length<float>
: lcast_src_length_floating<float>
{
static void check_coverage() {}
};
template<>
struct lcast_src_length<double>
: lcast_src_length_floating<double>
{
static void check_coverage() {}
};
template<>
struct lcast_src_length<long double>
: lcast_src_length_floating<long double>
{
static void check_coverage() {}
};
#endif // #ifndef BOOST_LCAST_NO_COMPILE_TIME_PRECISION
}
namespace detail // '0', '+' and '-' constants
{
template<typename CharT> struct lcast_char_constants;
template<>
struct lcast_char_constants<char>
{
BOOST_STATIC_CONSTANT(char, zero = '0');
BOOST_STATIC_CONSTANT(char, minus = '-');
BOOST_STATIC_CONSTANT(char, plus = '+');
BOOST_STATIC_CONSTANT(char, lowercase_e = 'e');
BOOST_STATIC_CONSTANT(char, capital_e = 'E');
BOOST_STATIC_CONSTANT(char, c_decimal_separator = '.');
};
#ifndef BOOST_LCAST_NO_WCHAR_T
template<>
struct lcast_char_constants<wchar_t>
{
BOOST_STATIC_CONSTANT(wchar_t, zero = L'0');
BOOST_STATIC_CONSTANT(wchar_t, minus = L'-');
BOOST_STATIC_CONSTANT(wchar_t, plus = L'+');
BOOST_STATIC_CONSTANT(wchar_t, lowercase_e = L'e');
BOOST_STATIC_CONSTANT(wchar_t, capital_e = L'E');
BOOST_STATIC_CONSTANT(wchar_t, c_decimal_separator = L'.');
};
#endif
#ifndef BOOST_NO_CHAR16_T
template<>
struct lcast_char_constants<char16_t>
{
BOOST_STATIC_CONSTANT(char16_t, zero = u'0');
BOOST_STATIC_CONSTANT(char16_t, minus = u'-');
BOOST_STATIC_CONSTANT(char16_t, plus = u'+');
BOOST_STATIC_CONSTANT(char16_t, lowercase_e = u'e');
BOOST_STATIC_CONSTANT(char16_t, capital_e = u'E');
BOOST_STATIC_CONSTANT(char16_t, c_decimal_separator = u'.');
};
#endif
#ifndef BOOST_NO_CHAR32_T
template<>
struct lcast_char_constants<char32_t>
{
BOOST_STATIC_CONSTANT(char32_t, zero = U'0');
BOOST_STATIC_CONSTANT(char32_t, minus = U'-');
BOOST_STATIC_CONSTANT(char32_t, plus = U'+');
BOOST_STATIC_CONSTANT(char32_t, lowercase_e = U'e');
BOOST_STATIC_CONSTANT(char32_t, capital_e = U'E');
BOOST_STATIC_CONSTANT(char32_t, c_decimal_separator = U'.');
};
#endif
}
namespace detail // lcast_to_unsigned
{
#if (defined _MSC_VER)
# pragma warning( push )
// C4146: unary minus operator applied to unsigned type, result still unsigned
# pragma warning( disable : 4146 )
#elif defined( __BORLANDC__ )
# pragma option push -w-8041
#endif
template<class T>
inline
BOOST_DEDUCED_TYPENAME make_unsigned<T>::type lcast_to_unsigned(T value)
{
typedef BOOST_DEDUCED_TYPENAME make_unsigned<T>::type result_type;
result_type uvalue = static_cast<result_type>(value);
return value < 0 ? -uvalue : uvalue;
}
#if (defined _MSC_VER)
# pragma warning( pop )
#elif defined( __BORLANDC__ )
# pragma option pop
#endif
}
namespace detail // lcast_put_unsigned
{
template<class Traits, class T, class CharT>
CharT* lcast_put_unsigned(const T n_param, CharT* finish)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
#endif
typedef typename Traits::int_type int_type;
CharT const czero = lcast_char_constants<CharT>::zero;
int_type const zero = Traits::to_int_type(czero);
BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
(sizeof(int_type) > sizeof(T))
, int_type
, T
>::type n = n_param;
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
if (loc != std::locale::classic()) {
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
if ( grouping_size && grouping[0] > 0 )
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
// Check that ulimited group is unreachable:
BOOST_STATIC_ASSERT(std::numeric_limits<T>::digits10 < CHAR_MAX);
#endif
CharT thousands_sep = np.thousands_sep();
std::string::size_type group = 0; // current group number
char last_grp_size = grouping[0];
char left = last_grp_size;
do
{
if(left == 0)
{
++group;
if(group < grouping_size)
{
char const grp_size = grouping[group];
last_grp_size = grp_size <= 0 ? CHAR_MAX : grp_size;
}
left = last_grp_size;
--finish;
Traits::assign(*finish, thousands_sep);
}
--left;
--finish;
int_type const digit = static_cast<int_type>(n % 10U);
Traits::assign(*finish, Traits::to_char_type(zero + digit));
n /= 10;
} while(n);
return finish;
}
}
#endif
{
do
{
--finish;
int_type const digit = static_cast<int_type>(n % 10U);
Traits::assign(*finish, Traits::to_char_type(zero + digit));
n /= 10;
} while(n);
}
return finish;
}
}
namespace detail // lcast_ret_unsigned
{
template<class Traits, class T, class CharT>
inline bool lcast_ret_unsigned(T& value, const CharT* const begin, const CharT* end)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
#endif
typedef typename Traits::int_type int_type;
CharT const czero = lcast_char_constants<CharT>::zero;
--end;
value = 0;
if ( *end < czero || *end >= czero + 10 || begin > end)
return false;
value = *end - czero;
--end;
T multiplier = 1;
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
if (loc != std::locale::classic()) {
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const& grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
/* According to Programming languages - C++
* we MUST check for correct grouping
*/
if (grouping_size && grouping[0] > 0)
{
unsigned char current_grouping = 0;
CharT const thousands_sep = np.thousands_sep();
char remained = grouping[current_grouping] - 1;
bool shall_we_return = true;
for(;end>=begin; --end)
{
if (remained) {
T const new_sub_value = multiplier * 10 * (*end - czero);
if (*end < czero || *end >= czero + 10
/* detecting overflow */
|| new_sub_value/10 != multiplier * (*end - czero)
|| static_cast<T>((std::numeric_limits<T>::max)()-new_sub_value) < value
)
return false;
value += new_sub_value;
multiplier *= 10;
--remained;
} else {
if ( !Traits::eq(*end, thousands_sep) ) //|| begin == end ) return false;
{
/*
* According to Programming languages - C++
* Digit grouping is checked. That is, the positions of discarded
* separators is examined for consistency with
* use_facet<numpunct<charT> >(loc ).grouping()
*
* BUT what if there is no separators at all and grouping()
* is not empty? Well, we have no extraced separators, so we
* won`t check them for consistency. This will allow us to
* work with "C" locale from other locales
*/
shall_we_return = false;
break;
} else {
if ( begin == end ) return false;
if (current_grouping < grouping_size-1 ) ++current_grouping;
remained = grouping[current_grouping];
}
}
}
if (shall_we_return) return true;
}
}
#endif
{
while ( begin <= end )
{
T const new_sub_value = multiplier * 10 * (*end - czero);
if (*end < czero || *end >= czero + 10
/* detecting overflow */
|| new_sub_value/10 != multiplier * (*end - czero)
|| static_cast<T>((std::numeric_limits<T>::max)()-new_sub_value) < value
)
return false;
value += new_sub_value;
multiplier *= 10;
--end;
}
}
return true;
}
}
namespace detail
{
/* Returns true and sets the correct value if found NaN or Inf. */
template <class CharT, class T>
inline bool parse_inf_nan_impl(const CharT* begin, const CharT* end, T& value
, const CharT* lc_NAN, const CharT* lc_nan
, const CharT* lc_INFINITY, const CharT* lc_infinity
, const CharT opening_brace, const CharT closing_brace)
{
using namespace std;
const wchar_t minus = lcast_char_constants<wchar_t>::minus;
const wchar_t plus = lcast_char_constants<wchar_t>::plus;
const int inifinity_size = 8;
bool has_minus = false;
/* Parsing +/- */
if( *begin == minus)
{
++ begin;
has_minus = true;
}
else if( *begin == plus ) ++begin;
if( end-begin < 3 ) return false;
if( !memcmp(begin, lc_nan, 3*sizeof(CharT)) || !memcmp(begin, lc_NAN, 3*sizeof(CharT)) )
{
begin += 3;
if (end != begin) /* It is 'nan(...)' or some bad input*/
{
if(end-begin<2) return false; // bad input
-- end;
if( *begin != opening_brace || *end != closing_brace) return false; // bad input
}
if( !has_minus ) value = std::numeric_limits<T>::quiet_NaN();
else value = (boost::math::changesign) (std::numeric_limits<T>::quiet_NaN());
return true;
} else
if (( /* 'INF' or 'inf' */
end-begin==3
&&
(!memcmp(begin, lc_infinity, 3*sizeof(CharT)) || !memcmp(begin, lc_INFINITY, 3*sizeof(CharT)))
)
||
( /* 'INFINITY' or 'infinity' */
end-begin==inifinity_size
&&
(!memcmp(begin, lc_infinity, inifinity_size)|| !memcmp(begin, lc_INFINITY, inifinity_size))
)
)
{
if( !has_minus ) value = std::numeric_limits<T>::infinity();
else value = (boost::math::changesign) (std::numeric_limits<T>::infinity());
return true;
}
return false;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool parse_inf_nan(const wchar_t* begin, const wchar_t* end, T& value)
{
return parse_inf_nan_impl(begin, end, value
, L"NAN", L"nan"
, L"INFINITY", L"infinity"
, L'(', L')');
}
#endif
template <class CharT, class T>
bool parse_inf_nan(const CharT* begin, const CharT* end, T& value)
{
return parse_inf_nan_impl(begin, end, value
, "NAN", "nan"
, "INFINITY", "infinity"
, '(', ')');
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool put_inf_nan(wchar_t* begin, wchar_t*& end, const T& value)
{
using namespace std;
if ( (boost::math::isnan)(value) )
{
if ( (boost::math::signbit)(value) )
{
memcpy(begin,L"-nan", sizeof(L"-nan"));
end = begin + 4;
} else
{
memcpy(begin,L"nan", sizeof(L"nan"));
end = begin + 3;
}
return true;
} else if ( (boost::math::isinf)(value) )
{
if ( (boost::math::signbit)(value) )
{
memcpy(begin,L"-inf", sizeof(L"-inf"));
end = begin + 4;
} else
{
memcpy(begin,L"inf", sizeof(L"inf"));
end = begin + 3;
}
return true;
}
return false;
}
#endif
template <class CharT, class T>
bool put_inf_nan(CharT* begin, CharT*& end, const T& value)
{
using namespace std;
if ( (boost::math::isnan)(value) )
{
if ( (boost::math::signbit)(value) )
{
memcpy(begin,"-nan", sizeof("-nan"));
end = begin + 4;
} else
{
memcpy(begin,"nan", sizeof("nan"));
end = begin + 3;
}
return true;
} else if ( (boost::math::isinf)(value) )
{
if ( (boost::math::signbit)(value) )
{
memcpy(begin,"-inf", sizeof("-inf"));
end = begin + 4;
} else
{
memcpy(begin,"inf", sizeof("inf"));
end = begin + 3;
}
return true;
}
return false;
}
}
namespace detail // lcast_ret_float
{
template <class T>
struct mantissa_holder_type
{
/* Can not be used with this type */
};
template <>
struct mantissa_holder_type<float>
{
typedef unsigned int type;
};
template <>
struct mantissa_holder_type<double>
{
#if defined(BOOST_HAS_LONG_LONG)
typedef boost::ulong_long_type type;
#elif defined(BOOST_HAS_MS_INT64)
typedef unsigned __int64 type;
#endif
};
template<class Traits, class T, class CharT>
inline bool lcast_ret_float(T& value, const CharT* begin, const CharT* end)
{
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const grouping(
(loc == std::locale::classic())
? std::string()
: np.grouping()
);
std::string::size_type const grouping_size = grouping.size();
CharT const thousands_sep = grouping_size ? np.thousands_sep() : 0;
CharT const decimal_point = np.decimal_point();
bool found_grouping = false;
unsigned int last_grouping_pos = grouping_size - 1;
#else
CharT const decimal_point = lcast_char_constants<CharT>::c_decimal_separator;
#endif
CharT const czero = lcast_char_constants<CharT>::zero;
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const capital_e = lcast_char_constants<CharT>::capital_e;
CharT const lowercase_e = lcast_char_constants<CharT>::lowercase_e;
value = 0.0;
if (parse_inf_nan(begin, end, value)) return true;
typedef typename Traits::int_type int_type;
typedef BOOST_DEDUCED_TYPENAME mantissa_holder_type<T>::type mantissa_type;
int_type const zero = Traits::to_int_type(czero);
if (begin == end) return false;
/* Getting the plus/minus sign */
bool has_minus = false;
if ( *begin == minus ) {
++ begin;
has_minus = true;
if (begin == end) return false;
} else if ( *begin == plus ) {
++begin;
if (begin == end) return false;
}
bool found_decimal = false;
bool found_number_before_exp = false;
int pow_of_10 = 0;
mantissa_type mantissa=0;
bool is_mantissa_full = false;
char length_since_last_delim = 0;
while ( begin != end )
{
if (found_decimal) {
/* We allow no thousand_separators after decimal point */
mantissa_type tmp_mantissa = mantissa * 10u;
if ( *begin == lowercase_e || *begin == capital_e ) break;
if ( *begin < czero || *begin >= czero + 10 ) return false;
if ( is_mantissa_full
|| tmp_mantissa / 10u != mantissa
|| (std::numeric_limits<mantissa_type>::max)()-(*begin - zero) < tmp_mantissa
) {
is_mantissa_full = true;
++ begin;
continue;
}
-- pow_of_10;
mantissa = tmp_mantissa;
mantissa += *begin - zero;
found_number_before_exp = true;
} else {
if (*begin >= czero && *begin < czero + 10) {
/* Checking for mantissa overflow. If overflow will
* occur, them we only increase multiplyer
*/
mantissa_type tmp_mantissa = mantissa * 10u;
if( !is_mantissa_full
&& tmp_mantissa / 10u == mantissa
&& (std::numeric_limits<mantissa_type>::max)()-(*begin - zero) >= tmp_mantissa
)
{
mantissa = tmp_mantissa;
mantissa += *begin - zero;
} else
{
is_mantissa_full = true;
++ pow_of_10;
}
found_number_before_exp = true;
++ length_since_last_delim;
} else if ( *begin == decimal_point || *begin == lowercase_e || *begin == capital_e) {
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
/* If ( we need to check grouping
* and ( grouping missmatches
* or grouping position is incorrect
* or we are using the grouping position 0 twice
* )
* ) then return error
*/
if( grouping_size && found_grouping
&& (
length_since_last_delim != grouping[0]
|| last_grouping_pos>1
|| (last_grouping_pos==0 && grouping_size>1)
)
) return false;
#endif
if(*begin == decimal_point){
++ begin;
found_decimal = true;
continue;
}else {
if (!found_number_before_exp) return false;
break;
}
}
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
else if (grouping_size && *begin == thousands_sep){
if(found_grouping)
{
/* It is not he first time, when we find thousands separator,
* so we need to chek, is the distance between two groupings
* equal to grouping[last_grouping_pos] */
if (length_since_last_delim != grouping[last_grouping_pos] )
{
if (!last_grouping_pos) return false;
else
{
-- last_grouping_pos;
if (length_since_last_delim != grouping[last_grouping_pos]) return false;
}
} else
/* We are calling the grouping[0] twice, when grouping size is more than 1 */
if (grouping_size>1u && last_grouping_pos+1<grouping_size) return false;
} else {
/* Delimiter at the begining ',000' */
if (!length_since_last_delim) return false;
found_grouping = true;
if (length_since_last_delim > grouping[last_grouping_pos] ) return false;
}
length_since_last_delim = 0;
++ begin;
/* Delimiter at the end '100,' */
if (begin == end) return false;
continue;
}
#endif
else return false;
}
++begin;
}
// Exponent found
if ( begin != end && ( *begin == lowercase_e || *begin == capital_e ) ) {
++ begin;
if ( begin == end ) return false;
bool exp_has_minus = false;
if( *begin == minus ) {
exp_has_minus = true;
++ begin;
if ( begin == end ) return false;
} else if (*begin == plus ) {
++ begin;
if ( begin == end ) return false;
}
int exp_pow_of_10 = 0;
while ( begin != end )
{
if ( *begin < czero
|| *begin >= czero + 10
|| exp_pow_of_10 * 10 < exp_pow_of_10) /* Overflows are checked lower more precisely*/
return false;
exp_pow_of_10 *= 10;
exp_pow_of_10 += *begin - zero;
++ begin;
};
if ( exp_pow_of_10 ) {
/* Overflows are checked lower */
if ( exp_has_minus ) {
pow_of_10 -= exp_pow_of_10;
} else {
pow_of_10 += exp_pow_of_10;
}
}
}
/* We need a more accurate algorithm... We can not use current algorithm
* with long doubles (and with doubles if sizeof(double)==sizeof(long double)).
*/
long double result = std::pow(10.0L, pow_of_10) * mantissa;
value = static_cast<T>( has_minus ? (boost::math::changesign)(result) : result);
if ( (boost::math::isinf)(value) || (boost::math::isnan)(value) ) return false;
return true;
}
}
namespace detail // stl_buf_unlocker
{
template< class BufferType, class CharT >
class stl_buf_unlocker: public BufferType{
public:
typedef BufferType base_class;
#ifndef BOOST_NO_USING_TEMPLATE
using base_class::pptr;
using base_class::pbase;
using base_class::setg;
using base_class::setp;
#else
CharT* pptr() const { return base_class::pptr(); }
CharT* pbase() const { return base_class::pbase(); }
void setg(CharT* gbeg, CharT* gnext, CharT* gend){ return base_class::setg(gbeg, gnext, gend); }
void setp(CharT* pbeg, CharT* pend) { return setp(pbeg, pend); }
#endif
};
}
namespace detail
{
struct do_not_construct_stringbuffer_t{};
}
namespace detail // optimized stream wrapper
{
// String representation of Source has an upper limit.
template< class CharT // a result of widest_char transformation
, class Traits // usually char_traits<CharT>
, bool RequiresStringbuffer
>
class lexical_stream_limited_src
{
typedef stl_buf_unlocker<std::basic_streambuf<CharT, Traits>, CharT > local_streambuffer_t;
#if defined(BOOST_NO_STRINGSTREAM)
typedef stl_buf_unlocker<std::strstream, CharT > local_stringbuffer_t;
#elif defined(BOOST_NO_STD_LOCALE)
typedef stl_buf_unlocker<std::stringstream, CharT > local_stringbuffer_t;
#else
typedef stl_buf_unlocker<std::basic_stringbuf<CharT, Traits>, CharT > local_stringbuffer_t;
#endif
typedef BOOST_DEDUCED_TYPENAME ::boost::mpl::if_c<
RequiresStringbuffer,
local_stringbuffer_t,
do_not_construct_stringbuffer_t
>::type deduced_stringbuffer_t;
// A string representation of Source is written to [start, finish).
CharT* start;
CharT* finish;
deduced_stringbuffer_t stringbuffer;
public:
lexical_stream_limited_src(CharT* sta, CharT* fin)
: start(sta)
, finish(fin)
{}
private:
// Undefined:
lexical_stream_limited_src(lexical_stream_limited_src const&);
void operator=(lexical_stream_limited_src const&);
/************************************ HELPER FUNCTIONS FOR OPERATORS << ( ... ) ********************************/
bool shl_char(CharT ch)
{
Traits::assign(*start, ch);
finish = start + 1;
return true;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool shl_char(T ch)
{
BOOST_STATIC_ASSERT_MSG(( sizeof(T) <= sizeof(CharT)) ,
"boost::lexical_cast does not support conversions from whar_t to char types."
"Use boost::locale instead" );
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
wchar_t w = BOOST_USE_FACET(std::ctype<wchar_t>, loc).widen(ch);
#else
wchar_t w = ch;
#endif
Traits::assign(*start, w);
finish = start + 1;
return true;
}
#endif
bool shl_char_array(CharT const* str)
{
start = const_cast<CharT*>(str);
finish = start + Traits::length(str);
return true;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool shl_char_array(T const* str)
{
BOOST_STATIC_ASSERT_MSG(( sizeof(T) <= sizeof(CharT)),
"boost::lexical_cast does not support conversions from wchar_t to char types."
"Use boost::locale instead" );
return shl_input_streamable(str);
}
#endif
template<typename InputStreamable>
bool shl_input_streamable(InputStreamable& input)
{
std::basic_ostream<CharT> stream(&stringbuffer);
bool const result = !(stream << input).fail();
start = stringbuffer.pbase();
finish = stringbuffer.pptr();
return result && (start != finish);
}
template <class T>
inline bool shl_signed(T n)
{
start = lcast_put_unsigned<Traits>(lcast_to_unsigned(n), finish);
if(n < 0)
{
--start;
CharT const minus = lcast_char_constants<CharT>::minus;
Traits::assign(*start, minus);
}
return true;
}
#if (defined _MSC_VER)
# pragma warning( push )
// C4996: This function or variable may be unsafe. Consider using sprintf_s instead
# pragma warning( disable : 4996 )
#endif
template <class T>
bool shl_float(float val,T* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
finish = start + sprintf(out,"%.*g", static_cast<int>(boost::detail::lcast_get_precision<float >()), val );
return finish > start;
}
template <class T>
bool shl_double(double val,T* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
finish = start + sprintf(out,"%.*lg", static_cast<int>(boost::detail::lcast_get_precision<double >()), val );
return finish > start;
}
#ifndef __MINGW32__
template <class T>
bool shl_long_double(long double val,T* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
finish = start + sprintf(out,"%.*Lg", static_cast<int>(boost::detail::lcast_get_precision<long double >()), val );
return finish > start;
}
#endif
#if (defined _MSC_VER)
# pragma warning( pop )
#endif
#ifndef BOOST_LCAST_NO_WCHAR_T
bool shl_float(float val,wchar_t* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
finish = start + swprintf(out,
#if !defined(__MINGW32__) && !defined(UNDER_CE)
finish-start,
#endif
L"%.*g", static_cast<int>(boost::detail::lcast_get_precision<float >()), val );
return finish > start;
}
bool shl_double(double val,wchar_t* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
/* __MINGW32__ is defined for both mingw.org and for mingw-w64.
* For mingw-w64, __MINGW64__ is defined, too, when targetting
* 64 bits.
*
* swprintf realization in MinGW and under WinCE does not conform
* to the ISO C
* Standard.
*/
finish = start + swprintf(out,
#if !defined(__MINGW32__) && !defined(UNDER_CE)
finish-start,
#endif
L"%.*lg", static_cast<int>(boost::detail::lcast_get_precision<double >()), val );
return finish > start;
}
#ifndef __MINGW32__
bool shl_long_double(long double val,wchar_t* out)
{ using namespace std;
if (put_inf_nan(start,finish,val)) return true;
finish = start + swprintf(out,
#if !defined(UNDER_CE)
finish-start,
#endif
L"%.*Lg", static_cast<int>(boost::detail::lcast_get_precision<long double >()), val );
return finish > start;
}
#endif
#endif
/************************************ OPERATORS << ( ... ) ********************************/
public:
template<class Alloc>
bool operator<<(std::basic_string<CharT,Traits,Alloc> const& str)
{
start = const_cast<CharT*>(str.data());
finish = start + str.length();
return true;
}
bool operator<<(bool value)
{
CharT const czero = lcast_char_constants<CharT>::zero;
Traits::assign(*start, Traits::to_char_type(czero + value));
finish = start + 1;
return true;
}
bool operator<<(char ch) { return shl_char(ch); }
bool operator<<(unsigned char ch) { return ((*this) << static_cast<char>(ch)); }
bool operator<<(signed char ch) { return ((*this) << static_cast<char>(ch)); }
#if !defined(BOOST_LCAST_NO_WCHAR_T)
bool operator<<(wchar_t const* str) { return shl_char_array(str); }
bool operator<<(wchar_t * str) { return shl_char_array(str); }
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
bool operator<<(wchar_t ch) { return shl_char(ch); }
#endif
#endif
bool operator<<(unsigned char const* ch) { return ((*this) << reinterpret_cast<char const*>(ch)); }
bool operator<<(unsigned char * ch) { return ((*this) << reinterpret_cast<char *>(ch)); }
bool operator<<(signed char const* ch) { return ((*this) << reinterpret_cast<char const*>(ch)); }
bool operator<<(signed char * ch) { return ((*this) << reinterpret_cast<char *>(ch)); }
bool operator<<(char const* str) { return shl_char_array(str); }
bool operator<<(char* str) { return shl_char_array(str); }
bool operator<<(short n) { return shl_signed(n); }
bool operator<<(int n) { return shl_signed(n); }
bool operator<<(long n) { return shl_signed(n); }
bool operator<<(unsigned short n) { start = lcast_put_unsigned<Traits>(n, finish); return true; }
bool operator<<(unsigned int n) { start = lcast_put_unsigned<Traits>(n, finish); return true; }
bool operator<<(unsigned long n) { start = lcast_put_unsigned<Traits>(n, finish); return true; }
#if defined(BOOST_HAS_LONG_LONG)
bool operator<<(boost::ulong_long_type n) { start = lcast_put_unsigned<Traits>(n, finish); return true; }
bool operator<<(boost::long_long_type n) { return shl_signed(n); }
#elif defined(BOOST_HAS_MS_INT64)
bool operator<<(unsigned __int64 n) { start = lcast_put_unsigned<Traits>(n, finish); return true; }
bool operator<<( __int64 n) { return shl_signed(n); }
#endif
bool operator<<(float val) { return shl_float(val,start); }
bool operator<<(double val) { return shl_double(val,start); }
bool operator<<(long double val) {
#ifndef __MINGW32__
return shl_long_double(val,start);
#else
return shl_double(val,start);
#endif
}
template<class InStreamable>
bool operator<<(const InStreamable& input) { return shl_input_streamable(input); }
/************************************ HELPER FUNCTIONS FOR OPERATORS >> ( ... ) ********************************/
private:
template <typename Type>
bool shr_unsigned(Type& output)
{
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
bool has_minus = false;
/* We won`t use `start' any more, so no need in decrementing it after */
if ( Traits::eq(minus,*start) )
{
++start;
has_minus = true;
} else if ( Traits::eq( plus, *start ) )
{
++start;
}
bool const succeed = lcast_ret_unsigned<Traits>(output, start, finish);
#if (defined _MSC_VER)
# pragma warning( push )
// C4146: unary minus operator applied to unsigned type, result still unsigned
# pragma warning( disable : 4146 )
#elif defined( __BORLANDC__ )
# pragma option push -w-8041
#endif
if (has_minus) output = static_cast<Type>(-output);
#if (defined _MSC_VER)
# pragma warning( pop )
#elif defined( __BORLANDC__ )
# pragma option pop
#endif
return succeed;
}
template <typename Type>
bool shr_signed(Type& output)
{
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
typedef BOOST_DEDUCED_TYPENAME make_unsigned<Type>::type utype;
utype out_tmp =0;
bool has_minus = false;
/* We won`t use `start' any more, so no need in decrementing it after */
if ( Traits::eq(minus,*start) )
{
++start;
has_minus = true;
} else if ( Traits::eq(plus, *start) )
{
++start;
}
bool succeed = lcast_ret_unsigned<Traits>(out_tmp, start, finish);
if (has_minus) {
#if (defined _MSC_VER)
# pragma warning( push )
// C4146: unary minus operator applied to unsigned type, result still unsigned
# pragma warning( disable : 4146 )
#elif defined( __BORLANDC__ )
# pragma option push -w-8041
#endif
utype const comp_val = static_cast<utype>(-(std::numeric_limits<Type>::min)());
succeed = succeed && out_tmp<=comp_val;
output = -out_tmp;
#if (defined _MSC_VER)
# pragma warning( pop )
#elif defined( __BORLANDC__ )
# pragma option pop
#endif
} else {
utype const comp_val = static_cast<utype>((std::numeric_limits<Type>::max)());
succeed = succeed && out_tmp<=comp_val;
output = out_tmp;
}
return succeed;
}
template<typename InputStreamable>
bool shr_using_base_class(InputStreamable& output)
{
#if (defined _MSC_VER)
# pragma warning( push )
// conditional expression is constant
# pragma warning( disable : 4127 )
#endif
if(is_pointer<InputStreamable>::value)
return false;
local_streambuffer_t bb;
bb.setg(start, start, finish);
std::basic_istream<CharT> stream(&bb);
stream.unsetf(std::ios::skipws);
lcast_set_precision(stream, static_cast<InputStreamable*>(0));
#if (defined _MSC_VER)
# pragma warning( pop )
#endif
return stream >> output &&
stream.get() ==
#if defined(__GNUC__) && (__GNUC__<3) && defined(BOOST_NO_STD_WSTRING)
// GCC 2.9x lacks std::char_traits<>::eof().
// We use BOOST_NO_STD_WSTRING to filter out STLport and libstdc++-v3
// configurations, which do provide std::char_traits<>::eof().
EOF;
#else
Traits::eof();
#endif
}
template<class T>
inline bool shr_xchar(T& output)
{
BOOST_STATIC_ASSERT_MSG(( sizeof(CharT) == sizeof(T) ),
"boost::lexical_cast does not support conversions from whar_t to char types."
"Use boost::locale instead" );
bool const ok = (finish - start == 1);
if(ok) {
CharT out;
Traits::assign(out, *start);
output = static_cast<T>(out);
}
return ok;
}
/************************************ OPERATORS >> ( ... ) ********************************/
public:
bool operator>>(unsigned short& output) { return shr_unsigned(output); }
bool operator>>(unsigned int& output) { return shr_unsigned(output); }
bool operator>>(unsigned long int& output) { return shr_unsigned(output); }
bool operator>>(short& output) { return shr_signed(output); }
bool operator>>(int& output) { return shr_signed(output); }
bool operator>>(long int& output) { return shr_signed(output); }
#if defined(BOOST_HAS_LONG_LONG)
bool operator>>(boost::ulong_long_type& output) { return shr_unsigned(output); }
bool operator>>(boost::long_long_type& output) { return shr_signed(output); }
#elif defined(BOOST_HAS_MS_INT64)
bool operator>>(unsigned __int64& output) { return shr_unsigned(output); }
bool operator>>(__int64& output) { return shr_signed(output); }
#endif
bool operator>>(CharT& output) { return shr_xchar(output); }
bool operator>>(unsigned char& output) { return shr_xchar(output); }
bool operator>>(signed char& output) { return shr_xchar(output); }
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
bool operator>>(std::string& str) { str.assign(start, finish); return true; }
# ifndef BOOST_LCAST_NO_WCHAR_T
bool operator>>(std::wstring& str) { str.assign(start, finish); return true; }
# endif
#else
template<class Alloc>
bool operator>>(std::basic_string<CharT,Traits,Alloc>& str) { str.assign(start, finish); return true; }
#endif
/*
* case "-0" || "0" || "+0" : output = false; return true;
* case "1" || "+1": output = true; return true;
* default: return false;
*/
bool operator>>(bool& output)
{
CharT const zero = lcast_char_constants<CharT>::zero;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const minus = lcast_char_constants<CharT>::minus;
switch(finish-start)
{
case 1:
output = Traits::eq(start[0], zero+1);
return output || Traits::eq(start[0], zero );
case 2:
if ( Traits::eq( plus, *start) )
{
++start;
output = Traits::eq(start[0], zero +1);
return output || Traits::eq(start[0], zero );
} else
{
output = false;
return Traits::eq( minus, *start)
&& Traits::eq( zero, start[1]);
}
default:
output = false; // Suppress warning about uninitalized variable
return false;
}
}
bool operator>>(float& output) { return lcast_ret_float<Traits>(output,start,finish); }
private:
// Not optimised converter
template <class T>
bool float_types_converter_internal(T& output, int /*tag*/) {
if (parse_inf_nan(start, finish, output)) return true;
bool return_value = shr_using_base_class(output);
/* Some compilers and libraries successfully
* parse 'inf', 'INFINITY', '1.0E', '1.0E-'...
* We are trying to provide a unified behaviour,
* so we just forbid such conversions (as some
* of the most popular compilers/libraries do)
* */
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const capital_e = lcast_char_constants<CharT>::capital_e;
CharT const lowercase_e = lcast_char_constants<CharT>::lowercase_e;
if ( return_value &&
(
*(finish-1) == lowercase_e // 1.0e
|| *(finish-1) == capital_e // 1.0E
|| *(finish-1) == minus // 1.0e- or 1.0E-
|| *(finish-1) == plus // 1.0e+ or 1.0E+
)
) return false;
return return_value;
}
// Optimised converter
bool float_types_converter_internal(double& output,char /*tag*/) {
return lcast_ret_float<Traits>(output,start,finish);
}
public:
bool operator>>(double& output)
{
/*
* Some compilers implement long double as double. In that case these types have
* same size, same precision, same max and min values... And it means,
* that current implementation of lcast_ret_float cannot be used for type
* double, because it will give a big precision loss.
* */
boost::mpl::if_c<
#if defined(BOOST_HAS_LONG_LONG) || defined(BOOST_HAS_MS_INT64)
::boost::type_traits::ice_eq< sizeof(double), sizeof(long double) >::value,
#else
0
#endif
int,
char
>::type tag = 0;
return float_types_converter_internal(output, tag);
}
bool operator>>(long double& output)
{
int tag = 0;
return float_types_converter_internal(output, tag);
}
// Generic istream-based algorithm.
// lcast_streambuf_for_target<InputStreamable>::value is true.
template<typename InputStreamable>
bool operator>>(InputStreamable& output) { return shr_using_base_class(output); }
};
}
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// call-by-const reference version
namespace detail
{
template<class T>
struct array_to_pointer_decay
{
typedef T type;
};
template<class T, std::size_t N>
struct array_to_pointer_decay<T[N]>
{
typedef const T * type;
};
template<typename T>
struct is_stdstring
{
BOOST_STATIC_CONSTANT(bool, value = false );
};
template<typename CharT, typename Traits, typename Alloc>
struct is_stdstring< std::basic_string<CharT, Traits, Alloc> >
{
BOOST_STATIC_CONSTANT(bool, value = true );
};
template<typename T>
struct is_char_or_wchar
{
private:
#ifndef BOOST_LCAST_NO_WCHAR_T
typedef wchar_t wchar_t_if_supported;
#else
typedef char wchar_t_if_supported;
#endif
#ifndef BOOST_NO_CHAR16_T
typedef char16_t char16_t_if_supported;
#else
typedef char char16_t_if_supported;
#endif
#ifndef BOOST_NO_CHAR32_T
typedef char32_t char32_t_if_supported;
#else
typedef char char32_t_if_supported;
#endif
public:
BOOST_STATIC_CONSTANT(bool, value =
(
::boost::type_traits::ice_or<
is_same< T, char >::value,
is_same< T, wchar_t_if_supported >::value,
is_same< T, char16_t_if_supported >::value,
is_same< T, char32_t_if_supported >::value,
is_same< T, unsigned char >::value,
is_same< T, signed char >::value
>::value
)
);
};
template<typename Target, typename Source>
struct is_arithmetic_and_not_xchars
{
BOOST_STATIC_CONSTANT(bool, value =
(
::boost::type_traits::ice_and<
is_arithmetic<Source>::value,
is_arithmetic<Target>::value,
::boost::type_traits::ice_not<
detail::is_char_or_wchar<Target>::value
>::value,
::boost::type_traits::ice_not<
detail::is_char_or_wchar<Source>::value
>::value
>::value
)
);
};
/*
* is_xchar_to_xchar<Target, Source>::value is true, when
* Target and Souce are the same char types, or when
* Target and Souce are char types of the same size.
*/
template<typename Target, typename Source>
struct is_xchar_to_xchar
{
BOOST_STATIC_CONSTANT(bool, value =
(
::boost::type_traits::ice_or<
::boost::type_traits::ice_and<
is_same<Source,Target>::value,
is_char_or_wchar<Target>::value
>::value,
::boost::type_traits::ice_and<
::boost::type_traits::ice_eq< sizeof(char),sizeof(Target)>::value,
::boost::type_traits::ice_eq< sizeof(char),sizeof(Source)>::value,
is_char_or_wchar<Target>::value,
is_char_or_wchar<Source>::value
>::value
>::value
)
);
};
template<typename Target, typename Source>
struct is_char_array_to_stdstring
{
BOOST_STATIC_CONSTANT(bool, value = false );
};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< std::basic_string<CharT, Traits, Alloc>, CharT* >
{
BOOST_STATIC_CONSTANT(bool, value = true );
};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< std::basic_string<CharT, Traits, Alloc>, const CharT* >
{
BOOST_STATIC_CONSTANT(bool, value = true );
};
#if (defined _MSC_VER)
# pragma warning( push )
# pragma warning( disable : 4701 ) // possible use of ... before initialization
# pragma warning( disable : 4702 ) // unreachable code
# pragma warning( disable : 4267 ) // conversion from 'size_t' to 'unsigned int'
#endif
template<typename Target, typename Source>
struct lexical_cast_do_cast
{
static inline Target lexical_cast_impl(const Source& arg)
{
typedef BOOST_DEDUCED_TYPENAME detail::array_to_pointer_decay<Source>::type src;
typedef BOOST_DEDUCED_TYPENAME detail::widest_char<
BOOST_DEDUCED_TYPENAME detail::stream_char<Target>::type
, BOOST_DEDUCED_TYPENAME detail::stream_char<src>::type
>::type char_type;
typedef detail::lcast_src_length<src> lcast_src_length;
std::size_t const src_len = lcast_src_length::value;
char_type buf[src_len + 1];
lcast_src_length::check_coverage();
typedef BOOST_DEDUCED_TYPENAME
deduce_char_traits<char_type,Target,Source>::type traits;
typedef BOOST_DEDUCED_TYPENAME remove_pointer<src >::type removed_ptr_t;
const bool requires_stringbuf =
!(
::boost::type_traits::ice_or<
is_stdstring<src >::value,
is_arithmetic<src >::value,
::boost::type_traits::ice_and<
is_pointer<src >::value,
is_char_or_wchar<removed_ptr_t >::value,
::boost::type_traits::ice_eq<
sizeof(char_type),
sizeof(removed_ptr_t)
>::value
>::value
>::value
);
detail::lexical_stream_limited_src<char_type,traits, requires_stringbuf >
interpreter(buf, buf + src_len);
Target result;
// Disabling ADL, by directly specifying operators.
if(!(interpreter.operator <<(arg) && interpreter.operator >>(result)))
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
return result;
}
};
#if (defined _MSC_VER)
# pragma warning( pop )
#endif
template<typename Source>
struct lexical_cast_copy
{
static inline Source lexical_cast_impl(const Source &arg)
{
return arg;
}
};
class precision_loss_error : public boost::numeric::bad_numeric_cast
{
public:
virtual const char * what() const throw()
{ return "bad numeric conversion: precision loss error"; }
};
template<class S >
struct throw_on_precision_loss
{
typedef boost::numeric::Trunc<S> Rounder;
typedef S source_type ;
typedef typename mpl::if_< is_arithmetic<S>,S,S const&>::type argument_type ;
static source_type nearbyint ( argument_type s )
{
source_type orig_div_round = s / Rounder::nearbyint(s);
if ( (orig_div_round > 1 ? orig_div_round - 1 : 1 - orig_div_round) > std::numeric_limits<source_type>::epsilon() )
BOOST_THROW_EXCEPTION( precision_loss_error() );
return s ;
}
typedef typename Rounder::round_style round_style;
} ;
template<typename Target, typename Source>
struct lexical_cast_dynamic_num_not_ignoring_minus
{
static inline Target lexical_cast_impl(const Source &arg)
{
try{
typedef boost::numeric::converter<
Target,
Source,
boost::numeric::conversion_traits<Target,Source>,
boost::numeric::def_overflow_handler,
throw_on_precision_loss<Source>
> Converter ;
return Converter::convert(arg);
} catch( ::boost::numeric::bad_numeric_cast const& ) {
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
}
BOOST_UNREACHABLE_RETURN(static_cast<Target>(0));
}
};
template<typename Target, typename Source>
struct lexical_cast_dynamic_num_ignoring_minus
{
static inline Target lexical_cast_impl(const Source &arg)
{
try{
typedef boost::numeric::converter<
Target,
Source,
boost::numeric::conversion_traits<Target,Source>,
boost::numeric::def_overflow_handler,
throw_on_precision_loss<Source>
> Converter ;
bool has_minus = ( arg < 0);
if ( has_minus ) {
return static_cast<Target>(-Converter::convert(-arg));
} else {
return Converter::convert(arg);
}
} catch( ::boost::numeric::bad_numeric_cast const& ) {
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
}
BOOST_UNREACHABLE_RETURN(static_cast<Target>(0));
}
};
/*
* lexical_cast_dynamic_num follows the rules:
* 1) If Source can be converted to Target without precision loss and
* without overflows, then assign Source to Target and return
*
* 2) If Source is less than 0 and Target is an unsigned integer,
* then negate Source, check the requirements of rule 1) and if
* successful, assign static_casted Source to Target and return
*
* 3) Otherwise throw a bad_lexical_cast exception
*
*
* Rule 2) required because boost::lexical_cast has the behavior of
* stringstream, which uses the rules of scanf for conversions. And
* in the C99 standard for unsigned input value minus sign is
* optional, so if a negative number is read, no errors will arise
* and the result will be the two's complement.
*/
template<typename Target, typename Source>
struct lexical_cast_dynamic_num
{
static inline Target lexical_cast_impl(const Source &arg)
{
typedef BOOST_DEDUCED_TYPENAME ::boost::mpl::if_c<
::boost::type_traits::ice_and<
::boost::type_traits::ice_or<
::boost::is_signed<Source>::value,
::boost::is_float<Source>::value
>::value,
::boost::type_traits::ice_not<
is_same<Source, bool>::value
>::value,
::boost::type_traits::ice_not<
is_same<Target, bool>::value
>::value,
::boost::is_unsigned<Target>::value
>::value,
lexical_cast_dynamic_num_ignoring_minus<Target, Source>,
lexical_cast_dynamic_num_not_ignoring_minus<Target, Source>
>::type caster_type;
return caster_type::lexical_cast_impl(arg);
}
};
}
template<typename Target, typename Source>
inline Target lexical_cast(const Source &arg)
{
typedef BOOST_DEDUCED_TYPENAME detail::array_to_pointer_decay<Source>::type src;
typedef BOOST_DEDUCED_TYPENAME ::boost::type_traits::ice_or<
detail::is_xchar_to_xchar<Target, src>::value,
detail::is_char_array_to_stdstring<Target,src>::value,
::boost::type_traits::ice_and<
is_same<Target, src>::value,
detail::is_stdstring<Target>::value
>::value
> do_copy_type;
typedef BOOST_DEDUCED_TYPENAME
detail::is_arithmetic_and_not_xchars<Target, src> do_copy_with_dynamic_check_type;
typedef BOOST_DEDUCED_TYPENAME ::boost::mpl::if_c<
do_copy_type::value,
detail::lexical_cast_copy<src>,
BOOST_DEDUCED_TYPENAME ::boost::mpl::if_c<
do_copy_with_dynamic_check_type::value,
detail::lexical_cast_dynamic_num<Target, src>,
detail::lexical_cast_do_cast<Target, src>
>::type
>::type caster_type;
return caster_type::lexical_cast_impl(arg);
}
#else
namespace detail // stream wrapper for handling lexical conversions
{
template<typename Target, typename Source, typename Traits>
class lexical_stream
{
private:
typedef typename widest_char<
typename stream_char<Target>::type,
typename stream_char<Source>::type>::type char_type;
typedef Traits traits_type;
public:
lexical_stream(char_type* = 0, char_type* = 0)
{
stream.unsetf(std::ios::skipws);
lcast_set_precision(stream, static_cast<Source*>(0), static_cast<Target*>(0) );
}
~lexical_stream()
{
#if defined(BOOST_NO_STRINGSTREAM)
stream.freeze(false);
#endif
}
bool operator<<(const Source &input)
{
return !(stream << input).fail();
}
template<typename InputStreamable>
bool operator>>(InputStreamable &output)
{
return !is_pointer<InputStreamable>::value &&
stream >> output &&
stream.get() ==
#if defined(__GNUC__) && (__GNUC__<3) && defined(BOOST_NO_STD_WSTRING)
// GCC 2.9x lacks std::char_traits<>::eof().
// We use BOOST_NO_STD_WSTRING to filter out STLport and libstdc++-v3
// configurations, which do provide std::char_traits<>::eof().
EOF;
#else
traits_type::eof();
#endif
}
bool operator>>(std::string &output)
{
#if defined(BOOST_NO_STRINGSTREAM)
stream << '\0';
#endif
stream.str().swap(output);
return true;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
bool operator>>(std::wstring &output)
{
stream.str().swap(output);
return true;
}
#endif
private:
#if defined(BOOST_NO_STRINGSTREAM)
std::strstream stream;
#elif defined(BOOST_NO_STD_LOCALE)
std::stringstream stream;
#else
std::basic_stringstream<char_type,traits_type> stream;
#endif
};
}
// call-by-value fallback version (deprecated)
template<typename Target, typename Source>
Target lexical_cast(Source arg)
{
typedef typename detail::widest_char<
BOOST_DEDUCED_TYPENAME detail::stream_char<Target>::type
, BOOST_DEDUCED_TYPENAME detail::stream_char<Source>::type
>::type char_type;
typedef std::char_traits<char_type> traits;
detail::lexical_stream<Target, Source, traits> interpreter;
Target result;
if(!(interpreter << arg && interpreter >> result))
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
return result;
}
#endif
}
// Copyright Kevlin Henney, 2000-2005.
// Copyright Alexander Nasonov, 2006-2010.
// Copyright Antony Polukhin, 2011.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#undef BOOST_LCAST_NO_WCHAR_T
#endif