boost/container/deque.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
// Copyright (c) 1996,1997
// Silicon Graphics Computer Systems, Inc.
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Silicon Graphics makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
//
//
// Copyright (c) 1994
// Hewlett-Packard Company
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. Hewlett-Packard Company makes no
// representations about the suitability of this software for any
// purpose. It is provided "as is" without express or implied warranty.
#ifndef BOOST_CONTAINER_DEQUE_HPP
#define BOOST_CONTAINER_DEQUE_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/allocator/allocator_traits.hpp>
#include <boost/container/container_fwd.hpp>
#include <cstddef>
#include <iterator>
#include <boost/assert.hpp>
#include <memory>
#include <algorithm>
#include <stdexcept>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/has_trivial_copy.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_nothrow_copy.hpp>
#include <boost/type_traits/has_nothrow_assign.hpp>
#include <boost/move/move.hpp>
#include <boost/move/move_helpers.hpp>
#include <boost/container/detail/advanced_insert_int.hpp>
namespace boost {
namespace container {
/// @cond
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class A = std::allocator<T> >
#else
template <class T, class A>
#endif
class deque;
template <class T, class A>
struct deque_value_traits
{
typedef T value_type;
typedef A allocator_type;
static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
static const bool trivial_dctr_after_move = false;
//::boost::has_trivial_destructor_after_move<value_type>::value || trivial_dctr;
static const bool trivial_copy = has_trivial_copy<value_type>::value;
static const bool nothrow_copy = has_nothrow_copy<value_type>::value;
static const bool trivial_assign = has_trivial_assign<value_type>::value;
//static const bool nothrow_assign = has_nothrow_assign<value_type>::value;
static const bool nothrow_assign = false;
};
// Note: this function is simply a kludge to work around several compilers'
// bugs in handling constant expressions.
inline std::size_t deque_buf_size(std::size_t size)
{ return size < 512 ? std::size_t(512 / size) : std::size_t(1); }
// Deque base class. It has two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier.
template <class T, class A>
class deque_base
{
BOOST_COPYABLE_AND_MOVABLE(deque_base)
public:
typedef allocator_traits<A> val_alloc_traits_type;
typedef typename val_alloc_traits_type::value_type val_alloc_val;
typedef typename val_alloc_traits_type::pointer val_alloc_ptr;
typedef typename val_alloc_traits_type::const_pointer val_alloc_cptr;
typedef typename val_alloc_traits_type::reference val_alloc_ref;
typedef typename val_alloc_traits_type::const_reference val_alloc_cref;
typedef typename val_alloc_traits_type::difference_type val_alloc_diff;
typedef typename val_alloc_traits_type::size_type val_alloc_size;
typedef typename val_alloc_traits_type::template
portable_rebind_alloc<val_alloc_ptr>::type ptr_alloc_t;
typedef allocator_traits<ptr_alloc_t> ptr_alloc_traits_type;
typedef typename ptr_alloc_traits_type::value_type ptr_alloc_val;
typedef typename ptr_alloc_traits_type::pointer ptr_alloc_ptr;
typedef typename ptr_alloc_traits_type::const_pointer ptr_alloc_cptr;
typedef typename ptr_alloc_traits_type::reference ptr_alloc_ref;
typedef typename ptr_alloc_traits_type::const_reference ptr_alloc_cref;
typedef A allocator_type;
typedef allocator_type stored_allocator_type;
typedef val_alloc_size size_type;
protected:
typedef deque_value_traits<T, A> traits_t;
typedef ptr_alloc_t map_allocator_type;
static size_type s_buffer_size() { return deque_buf_size(sizeof(T)); }
val_alloc_ptr priv_allocate_node()
{ return this->alloc().allocate(s_buffer_size()); }
void priv_deallocate_node(val_alloc_ptr p)
{ this->alloc().deallocate(p, s_buffer_size()); }
ptr_alloc_ptr priv_allocate_map(size_type n)
{ return this->ptr_alloc().allocate(n); }
void priv_deallocate_map(ptr_alloc_ptr p, size_type n)
{ this->ptr_alloc().deallocate(p, n); }
public:
// Class invariants:
// For any nonsingular iterator i:
// i.node is the address of an element in the map array. The
// contents of i.node is a pointer to the beginning of a node.
// i.first == //(i.node)
// i.last == i.first + node_size
// i.cur is a pointer in the range [i.first, i.last). NOTE:
// the implication of this is that i.cur is always a dereferenceable
// pointer, even if i is a past-the-end iterator.
// Start and Finish are always nonsingular iterators. NOTE: this means
// that an empty deque must have one node, and that a deque
// with N elements, where N is the buffer size, must have two nodes.
// For every node other than start.node and finish.node, every element
// in the node is an initialized object. If start.node == finish.node,
// then [start.cur, finish.cur) are initialized objects, and
// the elements outside that range are uninitialized storage. Otherwise,
// [start.cur, start.last) and [finish.first, finish.cur) are initialized
// objects, and [start.first, start.cur) and [finish.cur, finish.last)
// are uninitialized storage.
// [map, map + map_size) is a valid, non-empty range.
// [start.node, finish.node] is a valid range contained within
// [map, map + map_size).
// A pointer in the range [map, map + map_size) points to an allocated node
// if and only if the pointer is in the range [start.node, finish.node].
class const_iterator
: public std::iterator<std::random_access_iterator_tag,
val_alloc_val, val_alloc_diff,
val_alloc_cptr, val_alloc_cref>
{
public:
static size_type s_buffer_size() { return deque_base<T, A>::s_buffer_size(); }
typedef std::random_access_iterator_tag iterator_category;
typedef val_alloc_val value_type;
typedef val_alloc_cptr pointer;
typedef val_alloc_cref reference;
typedef val_alloc_diff difference_type;
typedef ptr_alloc_ptr index_pointer;
typedef const_iterator self_t;
friend class deque<T, A>;
friend class deque_base<T, A>;
protected:
val_alloc_ptr m_cur;
val_alloc_ptr m_first;
val_alloc_ptr m_last;
index_pointer m_node;
public:
const_iterator(val_alloc_ptr x, index_pointer y)
: m_cur(x), m_first(*y),
m_last(*y + s_buffer_size()), m_node(y) {}
const_iterator() : m_cur(0), m_first(0), m_last(0), m_node(0) {}
const_iterator(const const_iterator& x)
: m_cur(x.m_cur), m_first(x.m_first),
m_last(x.m_last), m_node(x.m_node) {}
reference operator*() const
{ return *this->m_cur; }
pointer operator->() const
{ return this->m_cur; }
difference_type operator-(const self_t& x) const
{
if(!this->m_cur && !x.m_cur){
return 0;
}
return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) +
(this->m_cur - this->m_first) + (x.m_last - x.m_cur);
}
self_t& operator++()
{
++this->m_cur;
if (this->m_cur == this->m_last) {
this->priv_set_node(this->m_node + 1);
this->m_cur = this->m_first;
}
return *this;
}
self_t operator++(int)
{
self_t tmp = *this;
++*this;
return tmp;
}
self_t& operator--()
{
if (this->m_cur == this->m_first) {
this->priv_set_node(this->m_node - 1);
this->m_cur = this->m_last;
}
--this->m_cur;
return *this;
}
self_t operator--(int)
{
self_t tmp = *this;
--*this;
return tmp;
}
self_t& operator+=(difference_type n)
{
difference_type offset = n + (this->m_cur - this->m_first);
if (offset >= 0 && offset < difference_type(this->s_buffer_size()))
this->m_cur += n;
else {
difference_type node_offset =
offset > 0 ? offset / difference_type(this->s_buffer_size())
: -difference_type((-offset - 1) / this->s_buffer_size()) - 1;
this->priv_set_node(this->m_node + node_offset);
this->m_cur = this->m_first +
(offset - node_offset * difference_type(this->s_buffer_size()));
}
return *this;
}
self_t operator+(difference_type n) const
{ self_t tmp = *this; return tmp += n; }
self_t& operator-=(difference_type n)
{ return *this += -n; }
self_t operator-(difference_type n) const
{ self_t tmp = *this; return tmp -= n; }
reference operator[](difference_type n) const
{ return *(*this + n); }
bool operator==(const self_t& x) const
{ return this->m_cur == x.m_cur; }
bool operator!=(const self_t& x) const
{ return !(*this == x); }
bool operator<(const self_t& x) const
{
return (this->m_node == x.m_node) ?
(this->m_cur < x.m_cur) : (this->m_node < x.m_node);
}
bool operator>(const self_t& x) const
{ return x < *this; }
bool operator<=(const self_t& x) const
{ return !(x < *this); }
bool operator>=(const self_t& x) const
{ return !(*this < x); }
void priv_set_node(index_pointer new_node)
{
this->m_node = new_node;
this->m_first = *new_node;
this->m_last = this->m_first + difference_type(this->s_buffer_size());
}
friend const_iterator operator+(difference_type n, const const_iterator& x)
{ return x + n; }
};
//Deque iterator
class iterator : public const_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef val_alloc_val value_type;
typedef val_alloc_ptr pointer;
typedef val_alloc_ref reference;
typedef val_alloc_diff difference_type;
typedef ptr_alloc_ptr index_pointer;
typedef const_iterator self_t;
friend class deque<T, A>;
friend class deque_base<T, A>;
private:
explicit iterator(const const_iterator& x) : const_iterator(x){}
public:
//Constructors
iterator(val_alloc_ptr x, index_pointer y) : const_iterator(x, y){}
iterator() : const_iterator(){}
//iterator(const const_iterator &cit) : const_iterator(cit){}
iterator(const iterator& x) : const_iterator(x){}
//Pointer like operators
reference operator*() const { return *this->m_cur; }
pointer operator->() const { return this->m_cur; }
reference operator[](difference_type n) const { return *(*this + n); }
//Increment / Decrement
iterator& operator++()
{ this->const_iterator::operator++(); return *this; }
iterator operator++(int)
{ iterator tmp = *this; ++*this; return tmp; }
iterator& operator--()
{ this->const_iterator::operator--(); return *this; }
iterator operator--(int)
{ iterator tmp = *this; --*this; return tmp; }
// Arithmetic
iterator& operator+=(difference_type off)
{ this->const_iterator::operator+=(off); return *this; }
iterator operator+(difference_type off) const
{ return iterator(this->const_iterator::operator+(off)); }
friend iterator operator+(difference_type off, const iterator& right)
{ return iterator(off+static_cast<const const_iterator &>(right)); }
iterator& operator-=(difference_type off)
{ this->const_iterator::operator-=(off); return *this; }
iterator operator-(difference_type off) const
{ return iterator(this->const_iterator::operator-(off)); }
difference_type operator-(const const_iterator& right) const
{ return static_cast<const const_iterator&>(*this) - right; }
};
deque_base(size_type num_elements, const allocator_type& a)
: members_(a)
{ this->priv_initialize_map(num_elements); }
explicit deque_base(const allocator_type& a)
: members_(a)
{}
deque_base()
: members_()
{}
explicit deque_base(BOOST_RV_REF(deque_base) x)
: members_( boost::move(x.ptr_alloc())
, boost::move(x.alloc()) )
{}
~deque_base()
{
if (this->members_.m_map) {
this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
}
}
private:
deque_base(const deque_base&);
protected:
void swap_members(deque_base &x)
{
std::swap(this->members_.m_start, x.members_.m_start);
std::swap(this->members_.m_finish, x.members_.m_finish);
std::swap(this->members_.m_map, x.members_.m_map);
std::swap(this->members_.m_map_size, x.members_.m_map_size);
}
void priv_initialize_map(size_type num_elements)
{
// if(num_elements){
size_type num_nodes = num_elements / s_buffer_size() + 1;
this->members_.m_map_size = container_detail::max_value((size_type) InitialMapSize, num_nodes + 2);
this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size);
ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2;
ptr_alloc_ptr nfinish = nstart + num_nodes;
BOOST_TRY {
this->priv_create_nodes(nstart, nfinish);
}
BOOST_CATCH(...){
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = 0;
this->members_.m_map_size = 0;
BOOST_RETHROW
}
BOOST_CATCH_END
this->members_.m_start.priv_set_node(nstart);
this->members_.m_finish.priv_set_node(nfinish - 1);
this->members_.m_start.m_cur = this->members_.m_start.m_first;
this->members_.m_finish.m_cur = this->members_.m_finish.m_first +
num_elements % s_buffer_size();
// }
}
void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish)
{
ptr_alloc_ptr cur;
BOOST_TRY {
for (cur = nstart; cur < nfinish; ++cur)
*cur = this->priv_allocate_node();
}
BOOST_CATCH(...){
this->priv_destroy_nodes(nstart, cur);
BOOST_RETHROW
}
BOOST_CATCH_END
}
void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish)
{
for (ptr_alloc_ptr n = nstart; n < nfinish; ++n)
this->priv_deallocate_node(*n);
}
void priv_clear_map()
{
if (this->members_.m_map) {
this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = 0;
this->members_.m_map_size = 0;
this->members_.m_start = iterator();
this->members_.m_finish = this->members_.m_start;
}
}
enum { InitialMapSize = 8 };
protected:
struct members_holder
: public ptr_alloc_t
, public allocator_type
{
members_holder()
: map_allocator_type(), allocator_type()
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
explicit members_holder(const allocator_type &a)
: map_allocator_type(a), allocator_type(a)
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
template<class ValAllocConvertible, class PtrAllocConvertible>
members_holder(BOOST_FWD_REF(PtrAllocConvertible) pa, BOOST_FWD_REF(ValAllocConvertible) va)
: map_allocator_type(boost::forward<PtrAllocConvertible>(pa))
, allocator_type (boost::forward<ValAllocConvertible>(va))
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
ptr_alloc_ptr m_map;
val_alloc_size m_map_size;
iterator m_start;
iterator m_finish;
} members_;
ptr_alloc_t &ptr_alloc()
{ return members_; }
const ptr_alloc_t &ptr_alloc() const
{ return members_; }
allocator_type &alloc()
{ return members_; }
const allocator_type &alloc() const
{ return members_; }
};
/// @endcond
//! Deque class
//!
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class A = std::allocator<T> >
#else
template <class T, class A>
#endif
class deque : protected deque_base<T, A>
{
/// @cond
private:
typedef deque_base<T, A> Base;
typedef typename Base::val_alloc_val val_alloc_val;
typedef typename Base::val_alloc_ptr val_alloc_ptr;
typedef typename Base::val_alloc_cptr val_alloc_cptr;
typedef typename Base::val_alloc_ref val_alloc_ref;
typedef typename Base::val_alloc_cref val_alloc_cref;
typedef typename Base::val_alloc_size val_alloc_size;
typedef typename Base::val_alloc_diff val_alloc_diff;
typedef typename Base::ptr_alloc_t ptr_alloc_t;
typedef typename Base::ptr_alloc_val ptr_alloc_val;
typedef typename Base::ptr_alloc_ptr ptr_alloc_ptr;
typedef typename Base::ptr_alloc_cptr ptr_alloc_cptr;
typedef typename Base::ptr_alloc_ref ptr_alloc_ref;
typedef typename Base::ptr_alloc_cref ptr_alloc_cref;
/// @endcond
public: // Basic types
typedef T value_type;
typedef val_alloc_ptr pointer;
typedef val_alloc_cptr const_pointer;
typedef val_alloc_ref reference;
typedef val_alloc_cref const_reference;
typedef val_alloc_size size_type;
typedef val_alloc_diff difference_type;
typedef typename Base::allocator_type allocator_type;
public: // Iterators
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef allocator_type stored_allocator_type;
/// @cond
private: // Internal typedefs
BOOST_COPYABLE_AND_MOVABLE(deque)
typedef ptr_alloc_ptr index_pointer;
static size_type s_buffer_size()
{ return Base::s_buffer_size(); }
typedef container_detail::advanced_insert_aux_int<iterator> advanced_insert_aux_int_t;
typedef repeat_iterator<T, difference_type> r_iterator;
typedef boost::move_iterator<r_iterator> move_it;
typedef allocator_traits<A> allocator_traits_type;
/// @endcond
public:
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return Base::alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return Base::alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return Base::alloc(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns an iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns a const_iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns a const_iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->members_.m_start); }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_start[difference_type(n)]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_start[difference_type(n)]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{ this->priv_range_check(n); return (*this)[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{ this->priv_range_check(n); return (*this)[n]; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_CONTAINER_NOEXCEPT
{ return *this->members_.m_start; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_CONTAINER_NOEXCEPT
{ return *this->members_.m_start; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_CONTAINER_NOEXCEPT
{ return *(end()-1); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_CONTAINER_NOEXCEPT
{ return *(cend()-1); }
//! <b>Effects</b>: Returns the number of the elements contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_finish - this->members_.m_start; }
//! <b>Effects</b>: Returns the largest possible size of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return allocator_traits_type::max_size(this->alloc()); }
//! <b>Effects</b>: Returns true if the deque contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return this->members_.m_finish == this->members_.m_start; }
//! <b>Effects</b>: Default constructors a deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
deque()
: Base()
{}
//! <b>Effects</b>: Constructs a deque taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
explicit deque(const allocator_type& a)
: Base(a)
{}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n default contructed values.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit deque(size_type n)
: Base(n, allocator_type())
{
container_detail::default_construct_aux_proxy<A, iterator> proxy(this->alloc(), n);
proxy.uninitialized_copy_remaining_to(this->begin());
//deque_base will deallocate in case of exception...
}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
deque(size_type n, const value_type& value,
const allocator_type& a = allocator_type())
: Base(n, a)
{ this->priv_fill_initialize(value); }
//! <b>Effects</b>: Copy constructs a deque.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
deque(const deque& x)
: Base(allocator_traits_type::select_on_container_copy_construction(x.alloc()))
{
if(x.size()){
this->priv_initialize_map(x.size());
boost::container::uninitialized_copy_alloc
(this->alloc(), x.begin(), x.end(), this->members_.m_start);
}
}
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
deque(BOOST_RV_REF(deque) x)
: Base(boost::move(static_cast<Base&>(x)))
{ this->swap_members(x); }
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's constructor taking an dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InpIt>
deque(InpIt first, InpIt last, const allocator_type& a = allocator_type())
: Base(a)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = container_detail::is_convertible<InpIt, size_type>::value;
typedef container_detail::bool_<aux_boolean> Result;
this->priv_initialize_dispatch(first, last, Result());
}
//! <b>Effects</b>: Destroys the deque. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~deque() BOOST_CONTAINER_NOEXCEPT
{
priv_destroy_range(this->members_.m_start, this->members_.m_finish);
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
deque& operator= (BOOST_COPY_ASSIGN_REF(deque) x)
{
if (&x != this){
allocator_type &this_alloc = this->alloc();
const allocator_type &x_alloc = x.alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this->alloc(), x.alloc(), flag);
container_detail::assign_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
this->assign(x.cbegin(), x.cend());
}
return *this;
}
//! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Linear.
deque& operator= (BOOST_RV_REF(deque) x)
{
if (&x != this){
allocator_type &this_alloc = this->alloc();
allocator_type &x_alloc = x.alloc();
//If allocators are equal we can just swap pointers
if(this_alloc == x_alloc){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
this->swap_members(x);
//Move allocator if needed
container_detail::bool_<allocator_traits_type::
propagate_on_container_move_assignment::value> flag;
container_detail::move_alloc(this_alloc, x_alloc, flag);
container_detail::move_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
}
//If unequal allocators, then do a one by one move
else{
typedef typename std::iterator_traits<iterator>::iterator_category ItCat;
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
}
return *this;
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(deque &x)
{
this->swap_members(x);
container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
container_detail::swap_alloc(this->alloc(), x.alloc(), flag);
container_detail::swap_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const T& val)
{ this->priv_fill_assign(n, val); }
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InpIt>
void assign(InpIt first, InpIt last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = container_detail::is_convertible<InpIt, size_type>::value;
typedef container_detail::bool_<aux_boolean> Result;
this->priv_assign_dispatch(first, last, Result());
}
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the deque
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the front of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(const T &x);
//! <b>Effects</b>: Constructs a new element in the front of the deque
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front)
#endif
//! <b>Effects</b>: Removes the last element from the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_CONTAINER_NOEXCEPT
{
if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) {
--this->members_.m_finish.m_cur;
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(this->members_.m_finish.m_cur)
);
}
else
this->priv_pop_back_aux();
}
//! <b>Effects</b>: Removes the first element from the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_front() BOOST_CONTAINER_NOEXCEPT
{
if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) {
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(this->members_.m_start.m_cur)
);
++this->members_.m_start.m_cur;
}
else
this->priv_pop_front_aux();
}
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with mx's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator)
#endif
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void insert(const_iterator pos, size_type n, const value_type& x)
{ this->priv_fill_insert(pos, n, x); }
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InpIt>
void insert(const_iterator pos, InpIt first, InpIt last)
{
//Dispatch depending on integer/iterator
const bool aux_boolean = container_detail::is_convertible<InpIt, size_type>::value;
typedef container_detail::bool_<aux_boolean> Result;
this->priv_insert_dispatch(pos, first, last, Result());
}
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time
template <class... Args>
void emplace_back(Args&&... args)
{
if(this->priv_push_back_simple_available()){
allocator_traits_type::construct
( this->alloc()
, this->priv_push_back_simple_pos()
, boost::forward<Args>(args)...);
this->priv_push_back_simple_commit();
}
else{
typedef container_detail::advanced_insert_aux_non_movable_emplace<A, iterator, Args...> type;
type &&proxy = type(this->alloc(), boost::forward<Args>(args)...);
this->priv_insert_back_aux_impl(1, proxy);
}
}
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the beginning of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time
template <class... Args>
void emplace_front(Args&&... args)
{
if(this->priv_push_front_simple_available()){
allocator_traits_type::construct
( this->alloc()
, this->priv_push_front_simple_pos()
, boost::forward<Args>(args)...);
this->priv_push_front_simple_commit();
}
else{
typedef container_detail::advanced_insert_aux_non_movable_emplace<A, iterator, Args...> type;
type &&proxy = type(this->alloc(), boost::forward<Args>(args)...);
this->priv_insert_front_aux_impl(1, proxy);
}
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template <class... Args>
iterator emplace(const_iterator p, Args&&... args)
{
if(p == this->cbegin()){
this->emplace_front(boost::forward<Args>(args)...);
return this->begin();
}
else if(p == this->cend()){
this->emplace_back(boost::forward<Args>(args)...);
return (this->end()-1);
}
else{
size_type n = p - this->cbegin();
typedef container_detail::advanced_insert_aux_emplace<A, iterator, Args...> type;
type &&proxy = type(this->alloc(), boost::forward<Args>(args)...);
this->priv_insert_aux_impl(p, 1, proxy);
return iterator(this->begin() + n);
}
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//advanced_insert_int.hpp includes all necessary preprocessor machinery...
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
if(priv_push_back_simple_available()){ \
allocator_traits_type::construct \
( this->alloc() \
, this->priv_push_back_simple_pos() \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
priv_push_back_simple_commit(); \
} \
else{ \
container_detail::BOOST_PP_CAT(BOOST_PP_CAT( \
advanced_insert_aux_non_movable_emplace, n), arg) \
<A, iterator BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> proxy \
(this->alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
priv_insert_back_aux_impl(1, proxy); \
} \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, > ) \
void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
if(priv_push_front_simple_available()){ \
allocator_traits_type::construct \
( this->alloc() \
, this->priv_push_front_simple_pos() \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
priv_push_front_simple_commit(); \
} \
else{ \
container_detail::BOOST_PP_CAT(BOOST_PP_CAT \
(advanced_insert_aux_non_movable_emplace, n), arg) \
<A, iterator BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> proxy \
(this->alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
priv_insert_front_aux_impl(1, proxy); \
} \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(const_iterator p \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
if(p == this->cbegin()){ \
this->emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
return this->begin(); \
} \
else if(p == cend()){ \
this->emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
return (this->end()-1); \
} \
else{ \
size_type pos_num = p - this->cbegin(); \
container_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
<A, iterator BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> proxy \
(this->alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
this->priv_insert_aux_impl(p, 1, proxy); \
return iterator(this->begin() + pos_num); \
} \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const value_type& x)
{
const size_type len = size();
if (new_size < len)
this->erase(this->members_.m_start + new_size, this->members_.m_finish);
else
this->insert(this->members_.m_finish, new_size - len, x);
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default constructed.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
const size_type len = size();
if (new_size < len)
this->priv_erase_last_n(len - new_size);
else{
size_type n = new_size - this->size();
container_detail::default_construct_aux_proxy<A, iterator> proxy(this->alloc(), n);
priv_insert_back_aux_impl(n, proxy);
}
}
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element (if pos is near the end) or the first element
//! if(pos is near the beginning).
//! Constant if pos is the first or the last element.
iterator erase(const_iterator pos) BOOST_CONTAINER_NOEXCEPT
{
const_iterator next = pos;
++next;
difference_type index = pos - this->members_.m_start;
if (size_type(index) < (this->size() >> 1)) {
boost::move_backward(begin(), iterator(pos), iterator(next));
pop_front();
}
else {
boost::move(iterator(next), end(), iterator(pos));
pop_back();
}
return this->members_.m_start + index;
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and
//! last plus the elements between pos and the
//! last element (if pos is near the end) or the first element
//! if(pos is near the beginning).
iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{
if (first == this->members_.m_start && last == this->members_.m_finish) {
this->clear();
return this->members_.m_finish;
}
else {
difference_type n = last - first;
difference_type elems_before = first - this->members_.m_start;
if (elems_before < static_cast<difference_type>(this->size() - n) - elems_before) {
boost::move_backward(begin(), iterator(first), iterator(last));
iterator new_start = this->members_.m_start + n;
if(!Base::traits_t::trivial_dctr_after_move)
this->priv_destroy_range(this->members_.m_start, new_start);
this->priv_destroy_nodes(this->members_.m_start.m_node, new_start.m_node);
this->members_.m_start = new_start;
}
else {
boost::move(iterator(last), end(), iterator(first));
iterator new_finish = this->members_.m_finish - n;
if(!Base::traits_t::trivial_dctr_after_move)
this->priv_destroy_range(new_finish, this->members_.m_finish);
this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1);
this->members_.m_finish = new_finish;
}
return this->members_.m_start + elems_before;
}
}
void priv_erase_last_n(size_type n)
{
if(n == this->size()) {
this->clear();
}
else {
iterator new_finish = this->members_.m_finish - n;
if(!Base::traits_t::trivial_dctr_after_move)
this->priv_destroy_range(new_finish, this->members_.m_finish);
this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1);
this->members_.m_finish = new_finish;
}
}
//! <b>Effects</b>: Erases all the elements of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the deque.
void clear() BOOST_CONTAINER_NOEXCEPT
{
for (index_pointer node = this->members_.m_start.m_node + 1;
node < this->members_.m_finish.m_node;
++node) {
this->priv_destroy_range(*node, *node + this->s_buffer_size());
this->priv_deallocate_node(*node);
}
if (this->members_.m_start.m_node != this->members_.m_finish.m_node) {
this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last);
this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur);
this->priv_deallocate_node(this->members_.m_finish.m_first);
}
else
this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur);
this->members_.m_finish = this->members_.m_start;
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the deque is unchanged
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Constant.
void shrink_to_fit()
{
//This deque implementation already
//deallocates excess nodes when erasing
//so there is nothing to do except for
//empty deque
if(this->empty()){
this->priv_clear_map();
}
}
/// @cond
private:
void priv_range_check(size_type n) const
{ if (n >= this->size()) BOOST_RETHROW std::out_of_range("deque"); }
iterator priv_insert(const_iterator position, const value_type &x)
{
if (position == cbegin()){
this->push_front(x);
return begin();
}
else if (position == cend()){
this->push_back(x);
return (end()-1);
}
else {
size_type n = position - cbegin();
this->priv_insert_aux(position, size_type(1), x);
return iterator(this->begin() + n);
}
}
iterator priv_insert(const_iterator position, BOOST_RV_REF(value_type) mx)
{
if (position == cbegin()) {
this->push_front(boost::move(mx));
return begin();
}
else if (position == cend()) {
this->push_back(boost::move(mx));
return(end()-1);
}
else {
//Just call more general insert(pos, size, value) and return iterator
size_type n = position - begin();
this->priv_insert_aux(position, move_it(r_iterator(mx, 1)), move_it(r_iterator()));
return iterator(this->begin() + n);
}
}
void priv_push_front(const value_type &t)
{
if(this->priv_push_front_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_front_simple_pos(), t);
this->priv_push_front_simple_commit();
}
else{
this->priv_insert_aux(cbegin(), size_type(1), t);
}
}
void priv_push_front(BOOST_RV_REF(value_type) t)
{
if(this->priv_push_front_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_front_simple_pos(), boost::move(t));
this->priv_push_front_simple_commit();
}
else{
this->priv_insert_aux(cbegin(), move_it(r_iterator(t, 1)), move_it(r_iterator()));
}
}
void priv_push_back(const value_type &t)
{
if(this->priv_push_back_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_back_simple_pos(), t);
this->priv_push_back_simple_commit();
}
else{
this->priv_insert_aux(cend(), size_type(1), t);
}
}
void priv_push_back(BOOST_RV_REF(T) t)
{
if(this->priv_push_back_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_back_simple_pos(), boost::move(t));
this->priv_push_back_simple_commit();
}
else{
this->priv_insert_aux(cend(), move_it(r_iterator(t, 1)), move_it(r_iterator()));
}
}
bool priv_push_back_simple_available() const
{
return this->members_.m_map &&
(this->members_.m_finish.m_cur != (this->members_.m_finish.m_last - 1));
}
T *priv_push_back_simple_pos() const
{
return container_detail::to_raw_pointer(this->members_.m_finish.m_cur);
}
void priv_push_back_simple_commit()
{
++this->members_.m_finish.m_cur;
}
bool priv_push_front_simple_available() const
{
return this->members_.m_map &&
(this->members_.m_start.m_cur != this->members_.m_start.m_first);
}
T *priv_push_front_simple_pos() const
{ return container_detail::to_raw_pointer(this->members_.m_start.m_cur) - 1; }
void priv_push_front_simple_commit()
{ --this->members_.m_start.m_cur; }
template <class InpIt>
void priv_insert_aux(const_iterator pos, InpIt first, InpIt last, std::input_iterator_tag)
{
for(;first != last; ++first){
this->insert(pos, boost::move(value_type(*first)));
}
}
template <class FwdIt>
void priv_insert_aux(const_iterator pos, FwdIt first, FwdIt last, std::forward_iterator_tag)
{ this->priv_insert_aux(pos, first, last); }
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
void priv_fill_assign(size_type n, const T& val)
{
if (n > size()) {
std::fill(begin(), end(), val);
this->insert(cend(), n - size(), val);
}
else {
this->erase(cbegin() + n, cend());
std::fill(begin(), end(), val);
}
}
template <class Integer>
void priv_initialize_dispatch(Integer n, Integer x, container_detail::true_)
{
this->priv_initialize_map(n);
this->priv_fill_initialize(x);
}
template <class InpIt>
void priv_initialize_dispatch(InpIt first, InpIt last, container_detail::false_)
{
typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
this->priv_range_initialize(first, last, ItCat());
}
void priv_destroy_range(iterator p, iterator p2)
{
for(;p != p2; ++p){
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(&*p)
);
}
}
void priv_destroy_range(pointer p, pointer p2)
{
for(;p != p2; ++p){
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(&*p)
);
}
}
template <class Integer>
void priv_assign_dispatch(Integer n, Integer val, container_detail::true_)
{ this->priv_fill_assign((size_type) n, (value_type)val); }
template <class InpIt>
void priv_assign_dispatch(InpIt first, InpIt last, container_detail::false_)
{
typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
this->priv_assign_aux(first, last, ItCat());
}
template <class InpIt>
void priv_assign_aux(InpIt first, InpIt last, std::input_iterator_tag)
{
iterator cur = begin();
for ( ; first != last && cur != end(); ++cur, ++first)
*cur = *first;
if (first == last)
this->erase(cur, cend());
else
this->insert(cend(), first, last);
}
template <class FwdIt>
void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag)
{
size_type len = std::distance(first, last);
if (len > size()) {
FwdIt mid = first;
std::advance(mid, size());
boost::copy_or_move(first, mid, begin());
this->insert(cend(), mid, last);
}
else
this->erase(boost::copy_or_move(first, last, begin()), cend());
}
template <class Integer>
void priv_insert_dispatch(const_iterator pos, Integer n, Integer x, container_detail::true_)
{ this->priv_fill_insert(pos, (size_type) n, (value_type)x); }
template <class InpIt>
void priv_insert_dispatch(const_iterator pos,InpIt first, InpIt last, container_detail::false_)
{
typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
this->priv_insert_aux(pos, first, last, ItCat());
}
void priv_insert_aux(const_iterator pos, size_type n, const value_type& x)
{
typedef constant_iterator<value_type, difference_type> c_it;
this->priv_insert_aux(pos, c_it(x, n), c_it());
}
//Just forward all operations to priv_insert_aux_impl
template <class FwdIt>
void priv_insert_aux(const_iterator p, FwdIt first, FwdIt last)
{
container_detail::advanced_insert_aux_proxy<A, FwdIt, iterator> proxy(this->alloc(), first, last);
priv_insert_aux_impl(p, (size_type)std::distance(first, last), proxy);
}
void priv_insert_aux_impl(const_iterator p, size_type n, advanced_insert_aux_int_t &interf)
{
iterator pos(p);
if(!this->members_.m_map){
this->priv_initialize_map(0);
pos = this->begin();
}
const difference_type elemsbefore = pos - this->members_.m_start;
size_type length = this->size();
if (elemsbefore < static_cast<difference_type>(length / 2)) {
iterator new_start = this->priv_reserve_elements_at_front(n);
iterator old_start = this->members_.m_start;
pos = this->members_.m_start + elemsbefore;
if (elemsbefore >= difference_type(n)) {
iterator start_n = this->members_.m_start + difference_type(n);
::boost::container::uninitialized_move_alloc
(this->alloc(), this->members_.m_start, start_n, new_start);
this->members_.m_start = new_start;
boost::move(start_n, pos, old_start);
interf.copy_remaining_to(pos - difference_type(n));
}
else {
difference_type mid_count = (difference_type(n) - elemsbefore);
iterator mid_start = old_start - mid_count;
interf.uninitialized_copy_some_and_update(mid_start, mid_count, true);
this->members_.m_start = mid_start;
::boost::container::uninitialized_move_alloc
(this->alloc(), old_start, pos, new_start);
this->members_.m_start = new_start;
interf.copy_remaining_to(old_start);
}
}
else {
iterator new_finish = this->priv_reserve_elements_at_back(n);
iterator old_finish = this->members_.m_finish;
const difference_type elemsafter =
difference_type(length) - elemsbefore;
pos = this->members_.m_finish - elemsafter;
if (elemsafter >= difference_type(n)) {
iterator finish_n = this->members_.m_finish - difference_type(n);
::boost::container::uninitialized_move_alloc
(this->alloc(), finish_n, this->members_.m_finish, this->members_.m_finish);
this->members_.m_finish = new_finish;
boost::move_backward(pos, finish_n, old_finish);
interf.copy_remaining_to(pos);
}
else {
interf.uninitialized_copy_some_and_update(old_finish, elemsafter, false);
this->members_.m_finish += n-elemsafter;
::boost::container::uninitialized_move_alloc
(this->alloc(), pos, old_finish, this->members_.m_finish);
this->members_.m_finish = new_finish;
interf.copy_remaining_to(pos);
}
}
}
void priv_insert_back_aux_impl(size_type n, advanced_insert_aux_int_t &interf)
{
if(!this->members_.m_map){
this->priv_initialize_map(0);
}
iterator new_finish = this->priv_reserve_elements_at_back(n);
iterator old_finish = this->members_.m_finish;
interf.uninitialized_copy_some_and_update(old_finish, n, true);
this->members_.m_finish = new_finish;
}
void priv_insert_front_aux_impl(size_type n, advanced_insert_aux_int_t &interf)
{
if(!this->members_.m_map){
this->priv_initialize_map(0);
}
iterator new_start = this->priv_reserve_elements_at_front(n);
interf.uninitialized_copy_some_and_update(new_start, difference_type(n), true);
this->members_.m_start = new_start;
}
void priv_fill_insert(const_iterator pos, size_type n, const value_type& x)
{
typedef constant_iterator<value_type, difference_type> c_it;
this->insert(pos, c_it(x, n), c_it());
}
// Precondition: this->members_.m_start and this->members_.m_finish have already been initialized,
// but none of the deque's elements have yet been constructed.
void priv_fill_initialize(const value_type& value)
{
index_pointer cur;
BOOST_TRY {
for (cur = this->members_.m_start.m_node; cur < this->members_.m_finish.m_node; ++cur){
boost::container::uninitialized_fill_alloc
(this->alloc(), *cur, *cur + this->s_buffer_size(), value);
}
boost::container::uninitialized_fill_alloc
(this->alloc(), this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value);
}
BOOST_CATCH(...){
this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur));
BOOST_RETHROW
}
BOOST_CATCH_END
}
template <class InpIt>
void priv_range_initialize(InpIt first, InpIt last, std::input_iterator_tag)
{
this->priv_initialize_map(0);
BOOST_TRY {
for ( ; first != last; ++first)
this->push_back(*first);
}
BOOST_CATCH(...){
this->clear();
BOOST_RETHROW
}
BOOST_CATCH_END
}
template <class FwdIt>
void priv_range_initialize(FwdIt first, FwdIt last, std::forward_iterator_tag)
{
size_type n = 0;
n = std::distance(first, last);
this->priv_initialize_map(n);
index_pointer cur_node;
BOOST_TRY {
for (cur_node = this->members_.m_start.m_node;
cur_node < this->members_.m_finish.m_node;
++cur_node) {
FwdIt mid = first;
std::advance(mid, this->s_buffer_size());
::boost::container::uninitialized_copy_or_move_alloc
(this->alloc(), first, mid, *cur_node);
first = mid;
}
::boost::container::uninitialized_copy_or_move_alloc
(this->alloc(), first, last, this->members_.m_finish.m_first);
}
BOOST_CATCH(...){
this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node));
BOOST_RETHROW
}
BOOST_CATCH_END
}
// Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first.
void priv_pop_back_aux()
{
this->priv_deallocate_node(this->members_.m_finish.m_first);
this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1);
this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1;
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(this->members_.m_finish.m_cur)
);
}
// Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that
// if the deque has at least one element (a precondition for this member
// function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque
// must have at least two nodes.
void priv_pop_front_aux()
{
allocator_traits_type::destroy
( this->alloc()
, container_detail::to_raw_pointer(this->members_.m_start.m_cur)
);
this->priv_deallocate_node(this->members_.m_start.m_first);
this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1);
this->members_.m_start.m_cur = this->members_.m_start.m_first;
}
iterator priv_reserve_elements_at_front(size_type n)
{
size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first;
if (n > vacancies){
size_type new_elems = n-vacancies;
size_type new_nodes = (new_elems + this->s_buffer_size() - 1) /
this->s_buffer_size();
size_type s = (size_type)(this->members_.m_start.m_node - this->members_.m_map);
if (new_nodes > s){
this->priv_reallocate_map(new_nodes, true);
}
size_type i = 1;
BOOST_TRY {
for (; i <= new_nodes; ++i)
*(this->members_.m_start.m_node - i) = this->priv_allocate_node();
}
BOOST_CATCH(...) {
for (size_type j = 1; j < i; ++j)
this->priv_deallocate_node(*(this->members_.m_start.m_node - j));
BOOST_RETHROW
}
BOOST_CATCH_END
}
return this->members_.m_start - difference_type(n);
}
iterator priv_reserve_elements_at_back(size_type n)
{
size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1;
if (n > vacancies){
size_type new_elems = n - vacancies;
size_type new_nodes = (new_elems + this->s_buffer_size() - 1)/s_buffer_size();
size_type s = (size_type)(this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map));
if (new_nodes + 1 > s){
this->priv_reallocate_map(new_nodes, false);
}
size_type i;
BOOST_TRY {
for (i = 1; i <= new_nodes; ++i)
*(this->members_.m_finish.m_node + i) = this->priv_allocate_node();
}
BOOST_CATCH(...) {
for (size_type j = 1; j < i; ++j)
this->priv_deallocate_node(*(this->members_.m_finish.m_node + j));
BOOST_RETHROW
}
BOOST_CATCH_END
}
return this->members_.m_finish + difference_type(n);
}
void priv_reallocate_map(size_type nodes_to_add, bool add_at_front)
{
size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1;
size_type new_num_nodes = old_num_nodes + nodes_to_add;
index_pointer new_nstart;
if (this->members_.m_map_size > 2 * new_num_nodes) {
new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2
+ (add_at_front ? nodes_to_add : 0);
if (new_nstart < this->members_.m_start.m_node)
boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
else
boost::move_backward
(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes);
}
else {
size_type new_map_size =
this->members_.m_map_size + container_detail::max_value(this->members_.m_map_size, nodes_to_add) + 2;
index_pointer new_map = this->priv_allocate_map(new_map_size);
new_nstart = new_map + (new_map_size - new_num_nodes) / 2
+ (add_at_front ? nodes_to_add : 0);
boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = new_map;
this->members_.m_map_size = new_map_size;
}
this->members_.m_start.priv_set_node(new_nstart);
this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1);
}
/// @endcond
};
// Nonmember functions.
template <class T, class A>
inline bool operator==(const deque<T, A>& x,
const deque<T, A>& y)
{
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}
template <class T, class A>
inline bool operator<(const deque<T, A>& x,
const deque<T, A>& y)
{
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
template <class T, class A>
inline bool operator!=(const deque<T, A>& x,
const deque<T, A>& y)
{ return !(x == y); }
template <class T, class A>
inline bool operator>(const deque<T, A>& x,
const deque<T, A>& y)
{ return y < x; }
template <class T, class A>
inline bool operator<=(const deque<T, A>& x,
const deque<T, A>& y)
{ return !(y < x); }
template <class T, class A>
inline bool operator>=(const deque<T, A>& x,
const deque<T, A>& y)
{ return !(x < y); }
template <class T, class A>
inline void swap(deque<T, A>& x, deque<T, A>& y)
{ x.swap(y); }
}}
/// @cond
namespace boost {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class A>
struct has_trivial_destructor_after_move<boost::container::deque<T, A> >
{
enum { value = has_trivial_destructor<A>::value };
};
*/
}
/// @endcond
#include <boost/container/detail/config_end.hpp>
#endif // #ifndef BOOST_CONTAINER_DEQUE_HPP