boost/container/detail/tree.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_TREE_HPP
#define BOOST_CONTAINER_TREE_HPP
#include "config_begin.hpp"
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/move/move.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/intrusive/rbtree.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/pair.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/allocator/allocator_traits.hpp>
#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
#include <boost/container/detail/preprocessor.hpp>
#endif
#include <utility> //std::pair
#include <iterator>
#include <algorithm>
namespace boost {
namespace container {
namespace container_detail {
template<class Key, class Value, class KeyCompare, class KeyOfValue>
struct value_compare_impl
: public KeyCompare
{
typedef Value value_type;
typedef KeyCompare key_compare;
typedef KeyOfValue key_of_value;
typedef Key key_type;
value_compare_impl(const key_compare &kcomp)
: key_compare(kcomp)
{}
const key_compare &key_comp() const
{ return static_cast<const key_compare &>(*this); }
key_compare &key_comp()
{ return static_cast<key_compare &>(*this); }
template<class T>
struct is_key
{
static const bool value = is_same<const T, const key_type>::value;
};
template<class T>
typename enable_if_c<is_key<T>::value, const key_type &>::type
key_forward(const T &key) const
{ return key; }
template<class T>
typename enable_if_c<!is_key<T>::value, const key_type &>::type
key_forward(const T &key) const
{ return KeyOfValue()(key); }
template<class KeyType, class KeyType2>
bool operator()(const KeyType &key1, const KeyType2 &key2) const
{ return key_compare::operator()(this->key_forward(key1), this->key_forward(key2)); }
};
template<class VoidPointer>
struct rbtree_hook
{
typedef typename container_detail::bi::make_set_base_hook
< container_detail::bi::void_pointer<VoidPointer>
, container_detail::bi::link_mode<container_detail::bi::normal_link>
, container_detail::bi::optimize_size<true>
>::type type;
};
template<class T>
struct rbtree_type
{
typedef T type;
};
template<class T1, class T2>
struct rbtree_type< std::pair<T1, T2> >
{
typedef pair<T1, T2> type;
};
template <class T, class VoidPointer>
struct rbtree_node
: public rbtree_hook<VoidPointer>::type
{
private:
BOOST_COPYABLE_AND_MOVABLE(rbtree_node)
public:
typedef typename rbtree_hook<VoidPointer>::type hook_type;
typedef T value_type;
typedef typename rbtree_type<T>::type internal_type;
typedef rbtree_node<T, VoidPointer> node_type;
rbtree_node()
: m_data()
{}
rbtree_node(const rbtree_node &other)
: m_data(other.m_data)
{}
rbtree_node(BOOST_RV_REF(rbtree_node) other)
: m_data(boost::move(other.m_data))
{}
#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
rbtree_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
: m_data(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)) \
{} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#else //#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
template<class ...Args>
rbtree_node(Args &&...args)
: m_data(boost::forward<Args>(args)...)
{}
#endif//#ifndef BOOST_CONTAINER_PERFECT_FORWARDING
rbtree_node &operator=(const rbtree_node &other)
{ do_assign(other.m_data); return *this; }
rbtree_node &operator=(BOOST_RV_REF(rbtree_node) other)
{ do_move(other.m_data); return *this; }
T &get_data()
{
T* ptr = reinterpret_cast<T*>(&this->m_data);
return *ptr;
}
const T &get_data() const
{
const T* ptr = reinterpret_cast<const T*>(&this->m_data);
return *ptr;
}
private:
internal_type m_data;
template<class A, class B>
void do_assign(const std::pair<const A, B> &p)
{
const_cast<A&>(m_data.first) = p.first;
m_data.second = p.second;
}
template<class A, class B>
void do_assign(const pair<const A, B> &p)
{
const_cast<A&>(m_data.first) = p.first;
m_data.second = p.second;
}
template<class V>
void do_assign(const V &v)
{ m_data = v; }
template<class A, class B>
void do_move(std::pair<const A, B> &p)
{
const_cast<A&>(m_data.first) = boost::move(p.first);
m_data.second = boost::move(p.second);
}
template<class A, class B>
void do_move(pair<const A, B> &p)
{
const_cast<A&>(m_data.first) = boost::move(p.first);
m_data.second = boost::move(p.second);
}
template<class V>
void do_move(V &v)
{ m_data = boost::move(v); }
};
}//namespace container_detail {
namespace container_detail {
template<class A, class ValueCompare>
struct intrusive_rbtree_type
{
typedef typename boost::container::
allocator_traits<A>::value_type value_type;
typedef typename boost::container::
allocator_traits<A>::void_pointer void_pointer;
typedef typename boost::container::
allocator_traits<A>::size_type size_type;
typedef typename container_detail::rbtree_node
<value_type, void_pointer> node_type;
typedef node_compare<ValueCompare, node_type> node_compare_type;
typedef typename container_detail::bi::make_rbtree
<node_type
,container_detail::bi::compare<node_compare_type>
,container_detail::bi::base_hook<typename rbtree_hook<void_pointer>::type>
,container_detail::bi::constant_time_size<true>
,container_detail::bi::size_type<size_type>
>::type container_type;
typedef container_type type ;
};
} //namespace container_detail {
namespace container_detail {
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
class rbtree
: protected container_detail::node_alloc_holder
< A
, typename container_detail::intrusive_rbtree_type
<A, value_compare_impl<Key, Value, KeyCompare, KeyOfValue>
>::type
, KeyCompare
>
{
typedef typename container_detail::intrusive_rbtree_type
< A, value_compare_impl
<Key, Value, KeyCompare, KeyOfValue>
>::type Icont;
typedef container_detail::node_alloc_holder
<A, Icont, KeyCompare> AllocHolder;
typedef typename AllocHolder::NodePtr NodePtr;
typedef rbtree < Key, Value, KeyOfValue
, KeyCompare, A> ThisType;
typedef typename AllocHolder::NodeAlloc NodeAlloc;
typedef typename AllocHolder::ValAlloc ValAlloc;
typedef typename AllocHolder::Node Node;
typedef typename Icont::iterator iiterator;
typedef typename Icont::const_iterator iconst_iterator;
typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer;
typedef typename AllocHolder::allocator_v1 allocator_v1;
typedef typename AllocHolder::allocator_v2 allocator_v2;
typedef typename AllocHolder::alloc_version alloc_version;
class RecyclingCloner;
friend class RecyclingCloner;
class RecyclingCloner
{
public:
RecyclingCloner(AllocHolder &holder, Icont &irbtree)
: m_holder(holder), m_icont(irbtree)
{}
NodePtr operator()(const Node &other) const
{
if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){
//First recycle a node (this can't throw)
try{
//This can throw
*p = other;
return p;
}
catch(...){
//If there is an exception destroy the whole source
m_holder.destroy_node(p);
while((p = m_icont.unlink_leftmost_without_rebalance())){
m_holder.destroy_node(p);
}
throw;
}
}
else{
return m_holder.create_node(other);
}
}
AllocHolder &m_holder;
Icont &m_icont;
};
class RecyclingMoveCloner;
friend class RecyclingMoveCloner;
class RecyclingMoveCloner
{
public:
RecyclingMoveCloner(AllocHolder &holder, Icont &irbtree)
: m_holder(holder), m_icont(irbtree)
{}
NodePtr operator()(const Node &other) const
{
if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){
//First recycle a node (this can't throw)
try{
//This can throw
*p = boost::move(other);
return p;
}
catch(...){
//If there is an exception destroy the whole source
m_holder.destroy_node(p);
while((p = m_icont.unlink_leftmost_without_rebalance())){
m_holder.destroy_node(p);
}
throw;
}
}
else{
return m_holder.create_node(other);
}
}
AllocHolder &m_holder;
Icont &m_icont;
};
BOOST_COPYABLE_AND_MOVABLE(rbtree)
public:
typedef Key key_type;
typedef Value value_type;
typedef A allocator_type;
typedef KeyCompare key_compare;
typedef value_compare_impl< Key, Value
, KeyCompare, KeyOfValue> value_compare;
typedef typename boost::container::
allocator_traits<A>::pointer pointer;
typedef typename boost::container::
allocator_traits<A>::const_pointer const_pointer;
typedef typename boost::container::
allocator_traits<A>::reference reference;
typedef typename boost::container::
allocator_traits<A>::const_reference const_reference;
typedef typename boost::container::
allocator_traits<A>::size_type size_type;
typedef typename boost::container::
allocator_traits<A>::difference_type difference_type;
typedef difference_type rbtree_difference_type;
typedef pointer rbtree_pointer;
typedef const_pointer rbtree_const_pointer;
typedef reference rbtree_reference;
typedef const_reference rbtree_const_reference;
typedef NodeAlloc stored_allocator_type;
private:
template<class KeyValueCompare>
struct key_node_compare
: private KeyValueCompare
{
key_node_compare(const KeyValueCompare &comp)
: KeyValueCompare(comp)
{}
template<class T>
struct is_node
{
static const bool value = is_same<T, Node>::value;
};
template<class T>
typename enable_if_c<is_node<T>::value, const value_type &>::type
key_forward(const T &node) const
{ return node.get_data(); }
template<class T>
typename enable_if_c<!is_node<T>::value, const T &>::type
key_forward(const T &key) const
{ return key; }
template<class KeyType, class KeyType2>
bool operator()(const KeyType &key1, const KeyType2 &key2) const
{ return KeyValueCompare::operator()(this->key_forward(key1), this->key_forward(key2)); }
};
typedef key_node_compare<value_compare> KeyNodeCompare;
public:
//rbtree const_iterator
class const_iterator
: public std::iterator
< std::bidirectional_iterator_tag
, value_type , rbtree_difference_type
, rbtree_const_pointer , rbtree_const_reference>
{
protected:
typedef typename Icont::iterator iiterator;
iiterator m_it;
explicit const_iterator(iiterator it) : m_it(it){}
void prot_incr() { ++m_it; }
void prot_decr() { --m_it; }
private:
iiterator get()
{ return this->m_it; }
public:
friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
typedef rbtree_difference_type difference_type;
//Constructors
const_iterator()
: m_it()
{}
//Pointer like operators
const_reference operator*() const
{ return m_it->get_data(); }
const_pointer operator->() const
{ return const_pointer(&m_it->get_data()); }
//Increment / Decrement
const_iterator& operator++()
{ prot_incr(); return *this; }
const_iterator operator++(int)
{ iiterator tmp = m_it; ++*this; return const_iterator(tmp); }
const_iterator& operator--()
{ prot_decr(); return *this; }
const_iterator operator--(int)
{ iiterator tmp = m_it; --*this; return const_iterator(tmp); }
//Comparison operators
bool operator== (const const_iterator& r) const
{ return m_it == r.m_it; }
bool operator!= (const const_iterator& r) const
{ return m_it != r.m_it; }
};
//rbtree iterator
class iterator : public const_iterator
{
private:
explicit iterator(iiterator it)
: const_iterator(it)
{}
iiterator get()
{ return this->m_it; }
public:
friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
typedef rbtree_pointer pointer;
typedef rbtree_reference reference;
//Constructors
iterator(){}
//Pointer like operators
reference operator*() const { return this->m_it->get_data(); }
pointer operator->() const { return pointer(&this->m_it->get_data()); }
//Increment / Decrement
iterator& operator++()
{ this->prot_incr(); return *this; }
iterator operator++(int)
{ iiterator tmp = this->m_it; ++*this; return iterator(tmp); }
iterator& operator--()
{ this->prot_decr(); return *this; }
iterator operator--(int)
{ iterator tmp = *this; --*this; return tmp; }
};
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
rbtree()
: AllocHolder(key_compare())
{}
rbtree(const key_compare& comp, const allocator_type& a = allocator_type())
: AllocHolder(a, comp)
{}
template <class InputIterator>
rbtree(InputIterator first, InputIterator last, const key_compare& comp,
const allocator_type& a, bool unique_insertion)
: AllocHolder(a, comp)
{
typedef typename std::iterator_traits<InputIterator>::iterator_category ItCat;
priv_create_and_insert_nodes(first, last, unique_insertion, alloc_version(), ItCat());
}
template <class InputIterator>
rbtree( ordered_range_t, InputIterator first, InputIterator last
, const key_compare& comp = key_compare(), const allocator_type& a = allocator_type())
: AllocHolder(a, comp)
{
typedef typename std::iterator_traits<InputIterator>::iterator_category ItCat;
priv_create_and_insert_ordered_nodes(first, last, alloc_version(), ItCat());
}
rbtree(const rbtree& x)
: AllocHolder(x, x.key_comp())
{
this->icont().clone_from
(x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
}
rbtree(BOOST_RV_REF(rbtree) x)
: AllocHolder(boost::move(static_cast<AllocHolder&>(x)), x.key_comp())
{}
~rbtree()
{} //AllocHolder clears the tree
rbtree& operator=(BOOST_COPY_ASSIGN_REF(rbtree) x)
{
if (&x != this){
NodeAlloc &this_alloc = this->get_stored_allocator();
const NodeAlloc &x_alloc = x.get_stored_allocator();
container_detail::bool_<allocator_traits<NodeAlloc>::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
}
this->AllocHolder::copy_assign_alloc(x);
//Transfer all the nodes to a temporary tree
//If anything goes wrong, all the nodes will be destroyed
//automatically
Icont other_tree(boost::move(this->icont()));
//Now recreate the source tree reusing nodes stored by other_tree
this->icont().clone_from
(x.icont()
, RecyclingCloner(*this, other_tree)
, Destroyer(this->node_alloc()));
//If there are remaining nodes, destroy them
NodePtr p;
while((p = other_tree.unlink_leftmost_without_rebalance())){
AllocHolder::destroy_node(p);
}
}
return *this;
}
rbtree& operator=(BOOST_RV_REF(rbtree) x)
{
if (&x != this){
NodeAlloc &this_alloc = this->node_alloc();
NodeAlloc &x_alloc = x.node_alloc();
//If allocators are equal we can just swap pointers
if(this_alloc == x_alloc){
//Destroy and swap pointers
this->clear();
this->icont() = boost::move(x.icont());
//Move allocator if needed
this->AllocHolder::move_assign_alloc(x);
}
//If unequal allocators, then do a one by one move
else{
//Transfer all the nodes to a temporary tree
//If anything goes wrong, all the nodes will be destroyed
//automatically
Icont other_tree(boost::move(this->icont()));
//Now recreate the source tree reusing nodes stored by other_tree
this->icont().clone_from
(x.icont()
, RecyclingMoveCloner(*this, other_tree)
, Destroyer(this->node_alloc()));
//If there are remaining nodes, destroy them
NodePtr p;
while((p = other_tree.unlink_leftmost_without_rebalance())){
AllocHolder::destroy_node(p);
}
}
}
return *this;
}
public:
// accessors:
value_compare value_comp() const
{ return this->icont().value_comp().value_comp(); }
key_compare key_comp() const
{ return this->icont().value_comp().value_comp().key_comp(); }
allocator_type get_allocator() const
{ return allocator_type(this->node_alloc()); }
const stored_allocator_type &get_stored_allocator() const
{ return this->node_alloc(); }
stored_allocator_type &get_stored_allocator()
{ return this->node_alloc(); }
iterator begin()
{ return iterator(this->icont().begin()); }
const_iterator begin() const
{ return this->cbegin(); }
iterator end()
{ return iterator(this->icont().end()); }
const_iterator end() const
{ return this->cend(); }
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(this->non_const_icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return const_iterator(this->non_const_icont().end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(cend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const
{ return const_reverse_iterator(cbegin()); }
bool empty() const
{ return !this->size(); }
size_type size() const
{ return this->icont().size(); }
size_type max_size() const
{ return AllocHolder::max_size(); }
void swap(ThisType& x)
{ AllocHolder::swap(x); }
public:
typedef typename Icont::insert_commit_data insert_commit_data;
// insert/erase
std::pair<iterator,bool> insert_unique_check
(const key_type& key, insert_commit_data &data)
{
std::pair<iiterator, bool> ret =
this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data);
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
std::pair<iterator,bool> insert_unique_check
(const_iterator hint, const key_type& key, insert_commit_data &data)
{
std::pair<iiterator, bool> ret =
this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data);
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
iterator insert_unique_commit(const value_type& v, insert_commit_data &data)
{
NodePtr tmp = AllocHolder::create_node(v);
iiterator it(this->icont().insert_unique_commit(*tmp, data));
return iterator(it);
}
template<class MovableConvertible>
iterator insert_unique_commit
(BOOST_FWD_REF(MovableConvertible) mv, insert_commit_data &data)
{
NodePtr tmp = AllocHolder::create_node(boost::forward<MovableConvertible>(mv));
iiterator it(this->icont().insert_unique_commit(*tmp, data));
return iterator(it);
}
std::pair<iterator,bool> insert_unique(const value_type& v)
{
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(KeyOfValue()(v), data);
if(!ret.second)
return ret;
return std::pair<iterator,bool>
(this->insert_unique_commit(v, data), true);
}
template<class MovableConvertible>
std::pair<iterator,bool> insert_unique(BOOST_FWD_REF(MovableConvertible) mv)
{
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(KeyOfValue()(mv), data);
if(!ret.second)
return ret;
return std::pair<iterator,bool>
(this->insert_unique_commit(boost::forward<MovableConvertible>(mv), data), true);
}
private:
std::pair<iterator, bool> emplace_unique_impl(NodePtr p)
{
value_type &v = p->get_data();
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(KeyOfValue()(v), data);
if(!ret.second){
Destroyer(this->node_alloc())(p);
return ret;
}
return std::pair<iterator,bool>
( iterator(iiterator(this->icont().insert_unique_commit(*p, data)))
, true );
}
iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p)
{
value_type &v = p->get_data();
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, KeyOfValue()(v), data);
if(!ret.second){
Destroyer(this->node_alloc())(p);
return ret.first;
}
return iterator(iiterator(this->icont().insert_unique_commit(*p, data)));
}
public:
#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
template <class... Args>
std::pair<iterator, bool> emplace_unique(Args&&... args)
{ return this->emplace_unique_impl(AllocHolder::create_node(boost::forward<Args>(args)...)); }
template <class... Args>
iterator emplace_hint_unique(const_iterator hint, Args&&... args)
{ return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::forward<Args>(args)...)); }
template <class... Args>
iterator emplace_equal(Args&&... args)
{
NodePtr p(AllocHolder::create_node(boost::forward<Args>(args)...));
return iterator(this->icont().insert_equal(this->icont().end(), *p));
}
template <class... Args>
iterator emplace_hint_equal(const_iterator hint, Args&&... args)
{
NodePtr p(AllocHolder::create_node(boost::forward<Args>(args)...));
return iterator(this->icont().insert_equal(hint.get(), *p));
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
std::pair<iterator, bool> emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
return this->emplace_unique_impl \
(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint_unique(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
return this->emplace_unique_hint_impl \
(hint, AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
return iterator(this->icont().insert_equal(this->icont().end(), *p)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_hint_equal(const_iterator hint \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
return iterator(this->icont().insert_equal(hint.get(), *p)); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
iterator insert_unique(const_iterator hint, const value_type& v)
{
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, KeyOfValue()(v), data);
if(!ret.second)
return ret.first;
return this->insert_unique_commit(v, data);
}
template<class MovableConvertible>
iterator insert_unique(const_iterator hint, BOOST_FWD_REF(MovableConvertible) mv)
{
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, KeyOfValue()(mv), data);
if(!ret.second)
return ret.first;
return this->insert_unique_commit(boost::forward<MovableConvertible>(mv), data);
}
template <class InputIterator>
void insert_unique(InputIterator first, InputIterator last)
{
if(this->empty()){
//Insert with end hint, to achieve linear
//complexity if [first, last) is ordered
const_iterator end(this->end());
for( ; first != last; ++first)
this->insert_unique(end, *first);
}
else{
for( ; first != last; ++first)
this->insert_unique(*first);
}
}
iterator insert_equal(const value_type& v)
{
NodePtr p(AllocHolder::create_node(v));
return iterator(this->icont().insert_equal(this->icont().end(), *p));
}
template<class MovableConvertible>
iterator insert_equal(BOOST_FWD_REF(MovableConvertible) mv)
{
NodePtr p(AllocHolder::create_node(boost::forward<MovableConvertible>(mv)));
return iterator(this->icont().insert_equal(this->icont().end(), *p));
}
iterator insert_equal(const_iterator hint, const value_type& v)
{
NodePtr p(AllocHolder::create_node(v));
return iterator(this->icont().insert_equal(hint.get(), *p));
}
template<class MovableConvertible>
iterator insert_equal(const_iterator hint, BOOST_FWD_REF(MovableConvertible) mv)
{
NodePtr p(AllocHolder::create_node(boost::forward<MovableConvertible>(mv)));
return iterator(this->icont().insert_equal(hint.get(), *p));
}
template <class InputIterator>
void insert_equal(InputIterator first, InputIterator last)
{
//Insert with end hint, to achieve linear
//complexity if [first, last) is ordered
const_iterator end(this->cend());
for( ; first != last; ++first)
this->insert_equal(end, *first);
}
iterator erase(const_iterator position)
{ return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); }
size_type erase(const key_type& k)
{ return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); }
iterator erase(const_iterator first, const_iterator last)
{ return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); }
void clear()
{ AllocHolder::clear(alloc_version()); }
// set operations:
iterator find(const key_type& k)
{ return iterator(this->icont().find(k, KeyNodeCompare(value_comp()))); }
const_iterator find(const key_type& k) const
{ return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp()))); }
size_type count(const key_type& k) const
{ return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); }
iterator lower_bound(const key_type& k)
{ return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp()))); }
const_iterator lower_bound(const key_type& k) const
{ return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp()))); }
iterator upper_bound(const key_type& k)
{ return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp()))); }
const_iterator upper_bound(const key_type& k) const
{ return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp()))); }
std::pair<iterator,iterator> equal_range(const key_type& k)
{
std::pair<iiterator, iiterator> ret =
this->icont().equal_range(k, KeyNodeCompare(value_comp()));
return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
}
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
{
std::pair<iiterator, iiterator> ret =
this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp()));
return std::pair<const_iterator,const_iterator>
(const_iterator(ret.first), const_iterator(ret.second));
}
private:
//Iterator range version
template<class InpIterator>
void priv_create_and_insert_nodes
(InpIterator beg, InpIterator end, bool unique, allocator_v1, std::input_iterator_tag)
{
if(unique){
for (; beg != end; ++beg){
this->insert_unique(*beg);
}
}
else{
for (; beg != end; ++beg){
this->insert_equal(*beg);
}
}
}
template<class InpIterator>
void priv_create_and_insert_nodes
(InpIterator beg, InpIterator end, bool unique, allocator_v2, std::input_iterator_tag)
{ //Just forward to the default one
priv_create_and_insert_nodes(beg, end, unique, allocator_v1(), std::input_iterator_tag());
}
class insertion_functor;
friend class insertion_functor;
class insertion_functor
{
Icont &icont_;
public:
insertion_functor(Icont &icont)
: icont_(icont)
{}
void operator()(Node &n)
{ this->icont_.insert_equal(this->icont_.cend(), n); }
};
template<class FwdIterator>
void priv_create_and_insert_nodes
(FwdIterator beg, FwdIterator end, bool unique, allocator_v2, std::forward_iterator_tag)
{
if(beg != end){
if(unique){
priv_create_and_insert_nodes(beg, end, unique, allocator_v2(), std::input_iterator_tag());
}
else{
//Optimized allocation and construction
this->allocate_many_and_construct
(beg, std::distance(beg, end), insertion_functor(this->icont()));
}
}
}
//Iterator range version
template<class InpIterator>
void priv_create_and_insert_ordered_nodes
(InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
{
const_iterator cend_n(this->cend());
for (; beg != end; ++beg){
this->insert_before(cend_n, *beg);
}
}
template<class InpIterator>
void priv_create_and_insert_ordered_nodes
(InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
{ //Just forward to the default one
priv_create_and_insert_ordered_nodes(beg, end, allocator_v1(), std::input_iterator_tag());
}
class back_insertion_functor;
friend class back_insertion_functor;
class back_insertion_functor
{
Icont &icont_;
public:
back_insertion_functor(Icont &icont)
: icont_(icont)
{}
void operator()(Node &n)
{ this->icont_.push_back(n); }
};
template<class FwdIterator>
void priv_create_and_insert_ordered_nodes
(FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
{
if(beg != end){
//Optimized allocation and construction
this->allocate_many_and_construct
(beg, std::distance(beg, end), back_insertion_functor(this->icont()));
}
}
};
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator==(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
return x.size() == y.size() &&
std::equal(x.begin(), x.end(), y.begin());
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator<(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
return std::lexicographical_compare(x.begin(), x.end(),
y.begin(), y.end());
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator!=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
return !(x == y);
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator>(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
return y < x;
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator<=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
return !(y < x);
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline bool
operator>=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
return !(x < y);
}
template <class Key, class Value, class KeyOfValue,
class KeyCompare, class A>
inline void
swap(rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
{
x.swap(y);
}
} //namespace container_detail {
} //namespace container {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class K, class V, class KOV,
class C, class A>
struct has_trivial_destructor_after_move
<boost::container::container_detail::rbtree<K, V, KOV, C, A> >
{
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value;
};
*/
} //namespace boost {
#include <boost/container/detail/config_end.hpp>
#endif //BOOST_CONTAINER_TREE_HPP