boost/container/slist.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_SLIST_HPP
#define BOOST_CONTAINER_SLIST_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/move/move.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#include <boost/intrusive/slist.hpp>
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//Preprocessor library to emulate perfect forwarding
#else
#include <boost/container/detail/preprocessor.hpp>
#endif
#include <stdexcept>
#include <iterator>
#include <utility>
#include <memory>
#include <functional>
#include <algorithm>
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#else
namespace boost {
namespace container {
#endif
/// @cond
namespace container_detail {
template<class VoidPointer>
struct slist_hook
{
typedef typename container_detail::bi::make_slist_base_hook
<container_detail::bi::void_pointer<VoidPointer>, container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type;
};
template <class T, class VoidPointer>
struct slist_node
: public slist_hook<VoidPointer>::type
{
slist_node()
: m_data()
{}
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template<class ...Args>
slist_node(Args &&...args)
: m_data(boost::forward<Args>(args)...)
{}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
template<BOOST_PP_ENUM_PARAMS(n, class P)> \
slist_node(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
: m_data(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)) \
{} \
//!
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif//#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
T m_data;
};
template<class A>
struct intrusive_slist_type
{
typedef boost::container::allocator_traits<A> allocator_traits_type;
typedef typename allocator_traits_type::value_type value_type;
typedef typename boost::intrusive::pointer_traits
<typename allocator_traits_type::pointer>::template
rebind_pointer<void>::type
void_pointer;
typedef typename container_detail::slist_node
<value_type, void_pointer> node_type;
typedef typename container_detail::bi::make_slist
<node_type
,container_detail::bi::base_hook<typename slist_hook<void_pointer>::type>
,container_detail::bi::constant_time_size<true>
, container_detail::bi::size_type
<typename allocator_traits_type::size_type>
>::type container_type;
typedef container_type type ;
};
} //namespace container_detail {
/// @endcond
//! An slist is a singly linked list: a list where each element is linked to the next
//! element, but not to the previous element. That is, it is a Sequence that
//! supports forward but not backward traversal, and (amortized) constant time
//! insertion and removal of elements. Slists, like lists, have the important
//! property that insertion and splicing do not invalidate iterators to list elements,
//! and that even removal invalidates only the iterators that point to the elements
//! that are removed. The ordering of iterators may be changed (that is,
//! slist<T>::iterator might have a different predecessor or successor after a list
//! operation than it did before), but the iterators themselves will not be invalidated
//! or made to point to different elements unless that invalidation or mutation is explicit.
//!
//! The main difference between slist and list is that list's iterators are bidirectional
//! iterators, while slist's iterators are forward iterators. This means that slist is
//! less versatile than list; frequently, however, bidirectional iterators are
//! unnecessary. You should usually use slist unless you actually need the extra
//! functionality of list, because singly linked lists are smaller and faster than double
//! linked lists.
//!
//! Important performance note: like every other Sequence, slist defines the member
//! functions insert and erase. Using these member functions carelessly, however, can
//! result in disastrously slow programs. The problem is that insert's first argument is
//! an iterator p, and that it inserts the new element(s) before p. This means that
//! insert must find the iterator just before p; this is a constant-time operation
//! for list, since list has bidirectional iterators, but for slist it must find that
//! iterator by traversing the list from the beginning up to p. In other words:
//! insert and erase are slow operations anywhere but near the beginning of the slist.
//!
//! Slist provides the member functions insert_after and erase_after, which are constant
//! time operations: you should always use insert_after and erase_after whenever
//! possible. If you find that insert_after and erase_after aren't adequate for your
//! needs, and that you often need to use insert and erase in the middle of the list,
//! then you should probably use list instead of slist.
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class A = std::allocator<T> >
#else
template <class T, class A>
#endif
class slist
: protected container_detail::node_alloc_holder
<A, typename container_detail::intrusive_slist_type<A>::type>
{
/// @cond
typedef typename container_detail::
move_const_ref_type<T>::type insert_const_ref_type;
typedef typename
container_detail::intrusive_slist_type<A>::type Icont;
typedef container_detail::node_alloc_holder<A, Icont> AllocHolder;
typedef typename AllocHolder::NodePtr NodePtr;
typedef slist <T, A> ThisType;
typedef typename AllocHolder::NodeAlloc NodeAlloc;
typedef typename AllocHolder::ValAlloc ValAlloc;
typedef typename AllocHolder::Node Node;
typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer;
typedef typename AllocHolder::allocator_v1 allocator_v1;
typedef typename AllocHolder::allocator_v2 allocator_v2;
typedef typename AllocHolder::alloc_version alloc_version;
typedef boost::container::allocator_traits<A> allocator_traits_type;
class equal_to_value
{
typedef typename AllocHolder::value_type value_type;
const value_type &t_;
public:
equal_to_value(const value_type &t)
: t_(t)
{}
bool operator()(const value_type &t)const
{ return t_ == t; }
};
template<class Pred>
struct ValueCompareToNodeCompare
: Pred
{
ValueCompareToNodeCompare(Pred pred)
: Pred(pred)
{}
bool operator()(const Node &a, const Node &b) const
{ return static_cast<const Pred&>(*this)(a.m_data, b.m_data); }
bool operator()(const Node &a) const
{ return static_cast<const Pred&>(*this)(a.m_data); }
};
/// @endcond
public:
//! The type of object, T, stored in the list
typedef T value_type;
//! Pointer to T
typedef typename allocator_traits_type::pointer pointer;
//! Const pointer to T
typedef typename allocator_traits_type::const_pointer const_pointer;
//! Reference to T
typedef typename allocator_traits_type::reference reference;
//! Const reference to T
typedef typename allocator_traits_type::const_reference const_reference;
//! An unsigned integral type
typedef typename allocator_traits_type::size_type size_type;
//! A signed integral type
typedef typename allocator_traits_type::difference_type difference_type;
//! The allocator type
typedef A allocator_type;
//! Non-standard extension: the stored allocator type
typedef NodeAlloc stored_allocator_type;
/// @cond
private:
BOOST_COPYABLE_AND_MOVABLE(slist)
typedef difference_type list_difference_type;
typedef pointer list_pointer;
typedef const_pointer list_const_pointer;
typedef reference list_reference;
typedef const_reference list_const_reference;
/// @endcond
public:
//! Const iterator used to iterate through a list.
class const_iterator
/// @cond
: public std::iterator<std::forward_iterator_tag,
value_type, list_difference_type,
list_const_pointer, list_const_reference>
{
protected:
typename Icont::iterator m_it;
explicit const_iterator(typename Icont::iterator it) : m_it(it){}
void prot_incr(){ ++m_it; }
private:
typename Icont::iterator get()
{ return this->m_it; }
public:
friend class slist<T, A>;
typedef list_difference_type difference_type;
//Constructors
const_iterator()
: m_it()
{}
//Pointer like operators
const_reference operator*() const
{ return m_it->m_data; }
const_pointer operator->() const
{ return const_pointer(&m_it->m_data); }
//Increment / Decrement
const_iterator& operator++()
{ prot_incr(); return *this; }
const_iterator operator++(int)
{ typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); }
//Comparison operators
bool operator== (const const_iterator& r) const
{ return m_it == r.m_it; }
bool operator!= (const const_iterator& r) const
{ return m_it != r.m_it; }
}
/// @endcond
;
//! Iterator used to iterate through a list
class iterator
/// @cond
: public const_iterator
{
private:
explicit iterator(typename Icont::iterator it)
: const_iterator(it)
{}
typename Icont::iterator get()
{ return this->m_it; }
public:
friend class slist<T, A>;
typedef list_pointer pointer;
typedef list_reference reference;
//Constructors
iterator(){}
//Pointer like operators
reference operator*() const { return this->m_it->m_data; }
pointer operator->() const { return pointer(&this->m_it->m_data); }
//Increment / Decrement
iterator& operator++()
{ this->prot_incr(); return *this; }
iterator operator++(int)
{ typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); }
}
/// @endcond
;
public:
//! <b>Effects</b>: Constructs a list taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
slist()
: AllocHolder()
{}
//! <b>Effects</b>: Constructs a list taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
explicit slist(const allocator_type& a)
: AllocHolder(a)
{}
explicit slist(size_type n)
: AllocHolder(allocator_type())
{ this->resize(n); }
//! <b>Effects</b>: Constructs a list that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit slist(size_type n, const value_type& x, const allocator_type& a = allocator_type())
: AllocHolder(a)
{ this->priv_create_and_insert_nodes(this->before_begin(), n, x); }
//! <b>Effects</b>: Constructs a list that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the list.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor
//! throws or T's constructor taking an dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InpIt>
slist(InpIt first, InpIt last,
const allocator_type& a = allocator_type())
: AllocHolder(a)
{ this->insert_after(this->before_begin(), first, last); }
//! <b>Effects</b>: Copy constructs a list.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
slist(const slist& x)
: AllocHolder(x)
{ this->insert_after(this->before_begin(), x.begin(), x.end()); }
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
slist(BOOST_RV_REF(slist) x)
: AllocHolder(boost::move(static_cast<AllocHolder&>(x)))
{}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
slist& operator= (BOOST_COPY_ASSIGN_REF(slist) x)
{
if (&x != this){
NodeAlloc &this_alloc = this->node_alloc();
const NodeAlloc &x_alloc = x.node_alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
}
this->AllocHolder::copy_assign_alloc(x);
this->assign(x.begin(), x.end());
}
return *this;
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
slist& operator= (BOOST_RV_REF(slist) x)
{
if (&x != this){
NodeAlloc &this_alloc = this->node_alloc();
NodeAlloc &x_alloc = x.node_alloc();
//If allocators a re equal we can just swap pointers
if(this_alloc == x_alloc){
//Destroy and swap pointers
this->clear();
this->icont() = boost::move(x.icont());
//Move allocator if needed
this->AllocHolder::move_assign_alloc(x);
}
//If unequal allocators, then do a one by one move
else{
typedef typename std::iterator_traits<iterator>::iterator_category ItCat;
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
}
return *this;
}
//! <b>Effects</b>: Destroys the list. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~slist()
{} //AllocHolder clears the slist
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return allocator_type(this->node_alloc()); }
const stored_allocator_type &get_stored_allocator() const
{ return this->node_alloc(); }
stored_allocator_type &get_stored_allocator()
{ return this->node_alloc(); }
public:
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const T& val)
{ this->priv_fill_assign(n, val); }
//! <b>Effects</b>: Assigns the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InpIt>
void assign(InpIt first, InpIt last)
{
const bool aux_boolean = container_detail::is_convertible<InpIt, size_type>::value;
typedef container_detail::bool_<aux_boolean> Result;
this->priv_assign_dispatch(first, last, Result());
}
//! <b>Effects</b>: Returns an iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin()
{ return iterator(this->icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const
{ return this->cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end()
{ return iterator(this->icont().end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const
{ return this->cend(); }
//! <b>Effects</b>: Returns a non-dereferenceable iterator that,
//! when incremented, yields begin(). This iterator may be used
//! as the argument toinsert_after, erase_after, etc.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator before_begin()
{ return iterator(end()); }
//! <b>Effects</b>: Returns a non-dereferenceable const_iterator
//! that, when incremented, yields begin(). This iterator may be used
//! as the argument toinsert_after, erase_after, etc.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator before_begin() const
{ return this->cbefore_begin(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const
{ return const_iterator(this->non_const_icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const
{ return const_iterator(this->non_const_icont().end()); }
//! <b>Effects</b>: Returns a non-dereferenceable const_iterator
//! that, when incremented, yields begin(). This iterator may be used
//! as the argument toinsert_after, erase_after, etc.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbefore_begin() const
{ return const_iterator(end()); }
//! <b>Effects</b>: Returns the number of the elements contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const
{ return this->icont().size(); }
//! <b>Effects</b>: Returns the largest possible size of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const
{ return AllocHolder::max_size(); }
//! <b>Effects</b>: Returns true if the list contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const
{ return !this->size(); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements on *this and x.
void swap(slist& x)
{ AllocHolder::swap(x); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front()
{ return *this->begin(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const
{ return *this->begin(); }
//! <b>Effects</b>: Inserts a copy of t in the beginning of the list.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(insert_const_ref_type x)
{ return priv_push_front(x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
void push_front(T &x) { push_front(const_cast<const T &>(x)); }
template<class U>
void push_front(const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return priv_push_front(u); }
#endif
//! <b>Effects</b>: Constructs a new element in the beginning of the list
//! and moves the resources of t to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(BOOST_RV_REF(T) x)
{ this->icont().push_front(*this->create_node(boost::move(x))); }
//! <b>Effects</b>: Removes the first element from the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Amortized constant time.
void pop_front()
{ this->icont().pop_front_and_dispose(Destroyer(this->node_alloc())); }
//! <b>Returns</b>: The iterator to the element before i in the sequence.
//! Returns the end-iterator, if either i is the begin-iterator or the
//! sequence is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
iterator previous(iterator p)
{ return iterator(this->icont().previous(p.get())); }
//! <b>Returns</b>: The const_iterator to the element before i in the sequence.
//! Returns the end-const_iterator, if either i is the begin-const_iterator or
//! the sequence is empty.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before i.
const_iterator previous(const_iterator p)
{ return const_iterator(this->icont().previous(p.get())); }
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts a copy of the value after the p pointed
//! by prev_p.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references of
//! previous values.
iterator insert_after(const_iterator prev_pos, insert_const_ref_type x)
{ return this->priv_insert_after(prev_pos, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
iterator insert_after(const_iterator position, T &x)
{ return this->insert_after(position, const_cast<const T &>(x)); }
template<class U>
iterator insert_after( const_iterator position, const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return this->priv_insert_after(position, u); }
#endif
//! <b>Requires</b>: prev_pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts a move constructed copy object from the value after the
//! p pointed by prev_pos.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references of
//! previous values.
iterator insert_after(const_iterator prev_pos, BOOST_RV_REF(value_type) x)
{ return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(boost::move(x)))); }
//! <b>Requires</b>: prev_pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts n copies of x after prev_pos.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references of
//! previous values.
void insert_after(const_iterator prev_pos, size_type n, const value_type& x)
{ this->priv_create_and_insert_nodes(prev_pos, n, x); }
//! <b>Requires</b>: prev_pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts the range pointed by [first, last)
//! after the p prev_pos.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws.
//!
//! <b>Complexity</b>: Linear to the number of elements inserted.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references of
//! previous values.
template <class InIter>
void insert_after(const_iterator prev_pos, InIter first, InIter last)
{
const bool aux_boolean = container_detail::is_convertible<InIter, size_type>::value;
typedef container_detail::bool_<aux_boolean> Result;
this->priv_insert_after_range_dispatch(prev_pos, first, last, Result());
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before p.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements before p.
iterator insert(const_iterator position, insert_const_ref_type x)
{ return this->priv_insert(position, x); }
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
iterator insert(const_iterator position, T &x)
{ return this->insert(position, const_cast<const T &>(x)); }
template<class U>
iterator insert( const_iterator position, const U &u
, typename container_detail::enable_if_c<container_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0)
{ return this->priv_insert(position, u); }
#endif
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before p with mx's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Linear to the elements before p.
iterator insert(const_iterator p, BOOST_RV_REF(value_type) x)
{ return this->insert_after(previous(p), boost::move(x)); }
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts n copies of x before p.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n plus linear to the elements before p.
void insert(const_iterator p, size_type n, const value_type& x)
{ return this->insert_after(previous(p), n, x); }
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before p.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last) plus
//! linear to the elements before p.
template <class InIter>
void insert(const_iterator p, InIter first, InIter last)
{ return this->insert_after(previous(p), first, last); }
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the front of the list
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template <class... Args>
void emplace_front(Args&&... args)
{ this->emplace_after(this->cbefore_begin(), boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before p
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements before p
template <class... Args>
iterator emplace(const_iterator p, Args&&... args)
{ return this->emplace_after(this->previous(p), boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... after prev
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Constant
template <class... Args>
iterator emplace_after(const_iterator prev, Args&&... args)
{
NodePtr pnode(AllocHolder::create_node(boost::forward<Args>(args)...));
return iterator(this->icont().insert_after(prev.get(), *pnode));
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
this->emplace(this->cbegin() \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace (const_iterator p \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
return this->emplace_after \
(this->previous(p) \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace_after(const_iterator prev \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
NodePtr pnode (AllocHolder::create_node \
(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
return iterator(this->icont().insert_after(prev.get(), *pnode)); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
//! <b>Effects</b>: Erases the element after the element pointed by prev_pos
//! of the list.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
iterator erase_after(const_iterator prev_pos)
{
return iterator(this->icont().erase_after_and_dispose(prev_pos.get(), Destroyer(this->node_alloc())));
}
//! <b>Effects</b>: Erases the range (before_first, last) from
//! the list.
//!
//! <b>Returns</b>: the first element remaining beyond the removed elements,
//! or end() if no such element exists.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of erased elements.
//!
//! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
iterator erase_after(const_iterator before_first, const_iterator last)
{
return iterator(this->icont().erase_after_and_dispose(before_first.get(), last.get(), Destroyer(this->node_alloc())));
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Erases the element at p p.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements before p.
iterator erase(const_iterator p)
{ return iterator(this->erase_after(previous(p))); }
//! <b>Requires</b>: first and last must be valid iterator to elements in *this.
//!
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last plus
//! linear to the elements before first.
iterator erase(const_iterator first, const_iterator last)
{ return iterator(this->erase_after(previous(first), last)); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{
typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
while (++(cur_next = cur) != end_n && new_size > 0){
--new_size;
cur = cur_next;
}
if (cur_next != end_n)
this->erase_after(const_iterator(cur), const_iterator(end_n));
else
this->insert_after(const_iterator(cur), new_size, x);
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default constructed.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
size_type len = this->size();
size_type left = new_size;
while (++(cur_next = cur) != end_n && left > 0){
--left;
cur = cur_next;
}
if (cur_next != end_n){
this->erase_after(const_iterator(cur), const_iterator(end_n));
}
else{
this->priv_create_and_insert_nodes(const_iterator(cur), new_size - len);
}
}
//! <b>Effects</b>: Erases all the elements of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the list.
void clear()
{ this->icont().clear_and_dispose(Destroyer(this->node_alloc())); }
//! <b>Requires</b>: p must point to an element contained
//! by the list. x != *this
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, after the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Linear to the elements in x.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist& x)
{
if((NodeAlloc&)*this == (NodeAlloc&)x){
this->icont().splice_after(prev_pos.get(), x.icont());
}
else{
throw std::runtime_error("slist::splice called with unequal allocators");
}
}
//! <b>Requires</b>: prev_pos must be a valid iterator of this.
//! i must point to an element contained in list x.
//!
//! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
//! after the element pointed by prev_pos.
//! If prev_pos == prev or prev_pos == ++prev, this function is a null operation.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist& x, const_iterator prev)
{
if((NodeAlloc&)*this == (NodeAlloc&)x){
this->icont().splice_after(prev_pos.get(), x.icont(), prev.get());
}
else{
throw std::runtime_error("slist::splice called with unequal allocators");
}
}
//! <b>Requires</b>: prev_pos must be a valid iterator of this.
//! before_first and before_last must be valid iterators of x.
//! prev_pos must not be contained in [before_first, before_last) range.
//!
//! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
//! from list x to this list, after the element pointed by prev_pos.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Linear to the number of transferred elements.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist& x,
const_iterator before_first, const_iterator before_last)
{
if((NodeAlloc&)*this == (NodeAlloc&)x){
this->icont().splice_after
(prev_pos.get(), x.icont(), before_first.get(), before_last.get());
}
else{
throw std::runtime_error("slist::splice called with unequal allocators");
}
}
//! <b>Requires</b>: prev_pos must be a valid iterator of this.
//! before_first and before_last must be valid iterators of x.
//! prev_pos must not be contained in [before_first, before_last) range.
//! n == std::distance(before_first, before_last)
//!
//! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
//! from list x to this list, after the element pointed by prev_pos.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice_after(const_iterator prev_pos, slist& x,
const_iterator before_first, const_iterator before_last,
size_type n)
{
if((NodeAlloc&)*this == (NodeAlloc&)x){
this->icont().splice_after
(prev_pos.get(), x.icont(), before_first.get(), before_last.get(), n);
}
else{
throw std::runtime_error("slist::splice called with unequal allocators");
}
}
//! <b>Requires</b>: p must point to an element contained
//! by the list. x != *this
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Linear in distance(begin(), p), and linear in x.size().
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, ThisType& x)
{ this->splice_after(this->previous(p), x); }
//! <b>Requires</b>: p must point to an element contained
//! by this list. i must point to an element contained in list x.
//!
//! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//! If p == i or p == ++i, this function is a null operation.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Linear in distance(begin(), p), and in distance(x.begin(), i).
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, slist& x, const_iterator i)
{ this->splice_after(previous(p), x, i); }
//! <b>Requires</b>: p must point to an element contained
//! by this list. first and last must point to elements contained in list x.
//!
//! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
//! are not equal.
//!
//! <b>Complexity</b>: Linear in distance(begin(), p), in distance(x.begin(), first),
//! and in distance(first, last).
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, slist& x, const_iterator first, const_iterator last)
{ this->splice_after(previous(p), x, previous(first), previous(last)); }
//! <b>Effects</b>: Reverses the order of elements in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void reverse()
{ this->icont().reverse(); }
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void remove(const T& value)
{ remove_if(equal_to_value(value)); }
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied.
//!
//! <b>Throws</b>: If pred throws.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template <class Pred>
void remove_if(Pred pred)
{
typedef ValueCompareToNodeCompare<Pred> Predicate;
this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc()));
}
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void unique()
{ this->unique(value_equal()); }
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//!
//! <b>Throws</b>: If pred throws.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template <class Pred>
void unique(Pred pred)
{
typedef ValueCompareToNodeCompare<Pred> Predicate;
this->icont().unique_and_dispose(Predicate(pred), Destroyer(this->node_alloc()));
}
//! <b>Requires</b>: The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
void merge(slist & x)
{ this->merge(x, value_less()); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references to *this are not invalidated.
template <class StrictWeakOrdering>
void merge(slist& x, StrictWeakOrdering comp)
{
if((NodeAlloc&)*this == (NodeAlloc&)x){
this->icont().merge(x.icont(),
ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
}
else{
throw std::runtime_error("list::merge called with unequal allocators");
}
}
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
void sort()
{ this->sort(value_less()); }
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
template <class StrictWeakOrdering>
void sort(StrictWeakOrdering comp)
{
// nothing if the slist has length 0 or 1.
if (this->size() < 2)
return;
this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
}
/// @cond
private:
iterator priv_insert(const_iterator p, const value_type& x)
{ return this->insert_after(previous(p), x); }
iterator priv_insert_after(const_iterator prev_pos, const value_type& x)
{ return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); }
void priv_push_front(const value_type &x)
{ this->icont().push_front(*this->create_node(x)); }
//Iterator range version
template<class InpIterator>
void priv_create_and_insert_nodes
(const_iterator prev, InpIterator beg, InpIterator end)
{
typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat;
priv_create_and_insert_nodes(prev, beg, end, alloc_version(), ItCat());
}
template<class InpIterator>
void priv_create_and_insert_nodes
(const_iterator prev, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
{
for (; beg != end; ++beg){
this->icont().insert_after(prev.get(), *this->create_node_from_it(beg));
++prev;
}
}
template<class InpIterator>
void priv_create_and_insert_nodes
(const_iterator prev, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
{ //Just forward to the default one
priv_create_and_insert_nodes(prev, beg, end, allocator_v1(), std::input_iterator_tag());
}
class insertion_functor;
friend class insertion_functor;
class insertion_functor
{
Icont &icont_;
typename Icont::const_iterator prev_;
public:
insertion_functor(Icont &icont, typename Icont::const_iterator prev)
: icont_(icont), prev_(prev)
{}
void operator()(Node &n)
{ prev_ = this->icont_.insert_after(prev_, n); }
};
template<class FwdIterator>
void priv_create_and_insert_nodes
(const_iterator prev, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
{
//Optimized allocation and construction
this->allocate_many_and_construct
(beg, std::distance(beg, end), insertion_functor(this->icont(), prev.get()));
}
//Default constructed version
void priv_create_and_insert_nodes(const_iterator prev, size_type n)
{
typedef default_construct_iterator<value_type, difference_type> default_iterator;
this->priv_create_and_insert_nodes(prev, default_iterator(n), default_iterator());
}
//Copy constructed version
void priv_create_and_insert_nodes(const_iterator prev, size_type n, const T& x)
{
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
this->priv_create_and_insert_nodes(prev, cvalue_iterator(x, n), cvalue_iterator());
}
//Dispatch to detect iterator range or integer overloads
template <class InputIter>
void priv_insert_dispatch(const_iterator prev,
InputIter first, InputIter last,
container_detail::false_)
{ this->priv_create_and_insert_nodes(prev, first, last); }
template<class Integer>
void priv_insert_dispatch(const_iterator prev, Integer n, Integer x, container_detail::true_)
{ this->priv_create_and_insert_nodes(prev, (size_type)n, x); }
void priv_fill_assign(size_type n, const T& val)
{
iterator end_n(this->end());
iterator prev(this->before_begin());
iterator node(this->begin());
for ( ; node != end_n && n > 0 ; --n){
*node = val;
prev = node;
++node;
}
if (n > 0)
this->priv_create_and_insert_nodes(prev, n, val);
else
this->erase_after(prev, end_n);
}
template <class Int>
void priv_assign_dispatch(Int n, Int val, container_detail::true_)
{ this->priv_fill_assign((size_type) n, (T)val); }
template <class InpIt>
void priv_assign_dispatch(InpIt first, InpIt last, container_detail::false_)
{
iterator end_n(this->end());
iterator prev(this->before_begin());
iterator node(this->begin());
while (node != end_n && first != last){
*node = *first;
prev = node;
++node;
++first;
}
if (first != last)
this->priv_create_and_insert_nodes(prev, first, last);
else
this->erase_after(prev, end_n);
}
template <class Int>
void priv_insert_after_range_dispatch(const_iterator prev_pos, Int n, Int x, container_detail::true_)
{ this->priv_create_and_insert_nodes(prev_pos, (size_type)n, x); }
template <class InIter>
void priv_insert_after_range_dispatch(const_iterator prev_pos, InIter first, InIter last, container_detail::false_)
{ this->priv_create_and_insert_nodes(prev_pos, first, last); }
//Functors for member algorithm defaults
struct value_less
{
bool operator()(const value_type &a, const value_type &b) const
{ return a < b; }
};
struct value_equal
{
bool operator()(const value_type &a, const value_type &b) const
{ return a == b; }
};
struct value_equal_to_this
{
explicit value_equal_to_this(const value_type &ref)
: m_ref(ref){}
bool operator()(const value_type &val) const
{ return m_ref == val; }
const value_type &m_ref;
};
/// @endcond
};
template <class T, class A>
inline bool
operator==(const slist<T,A>& x, const slist<T,A>& y)
{
if(x.size() != y.size()){
return false;
}
typedef typename slist<T,A>::const_iterator const_iterator;
const_iterator end1 = x.end();
const_iterator i1 = x.begin();
const_iterator i2 = y.begin();
while (i1 != end1 && *i1 == *i2){
++i1;
++i2;
}
return i1 == end1;
}
template <class T, class A>
inline bool
operator<(const slist<T,A>& sL1, const slist<T,A>& sL2)
{
return std::lexicographical_compare
(sL1.begin(), sL1.end(), sL2.begin(), sL2.end());
}
template <class T, class A>
inline bool
operator!=(const slist<T,A>& sL1, const slist<T,A>& sL2)
{ return !(sL1 == sL2); }
template <class T, class A>
inline bool
operator>(const slist<T,A>& sL1, const slist<T,A>& sL2)
{ return sL2 < sL1; }
template <class T, class A>
inline bool
operator<=(const slist<T,A>& sL1, const slist<T,A>& sL2)
{ return !(sL2 < sL1); }
template <class T, class A>
inline bool
operator>=(const slist<T,A>& sL1, const slist<T,A>& sL2)
{ return !(sL1 < sL2); }
template <class T, class A>
inline void swap(slist<T,A>& x, slist<T,A>& y)
{ x.swap(y); }
}}
/// @cond
namespace boost {
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class A>
struct has_trivial_destructor_after_move<boost::container::slist<T, A> >
{
static const bool value = has_trivial_destructor<A>::value;
};
*/
namespace container {
/// @endcond
}} //namespace boost{ namespace container {
// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.
///@cond
//Ummm, I don't like to define things in namespace std, but
//there is no other way
namespace std {
template <class T, class A>
class insert_iterator<boost::container::slist<T, A> >
{
protected:
typedef boost::container::slist<T, A> Container;
Container* container;
typename Container::iterator iter;
public:
typedef Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
insert_iterator(Container& x,
typename Container::iterator i,
bool is_previous = false)
: container(&x), iter(is_previous ? i : x.previous(i)){ }
insert_iterator<Container>&
operator=(const typename Container::value_type& value)
{
iter = container->insert_after(iter, value);
return *this;
}
insert_iterator<Container>& operator*(){ return *this; }
insert_iterator<Container>& operator++(){ return *this; }
insert_iterator<Container>& operator++(int){ return *this; }
};
} //namespace std;
///@endcond
#include <boost/container/detail/config_end.hpp>
#endif /* BOOST_CONTAINER_SLIST_HPP */