boost/graph/graph_utility.hpp
//
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_GRAPH_UTILITY_HPP
#define BOOST_GRAPH_UTILITY_HPP
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <assert.h>
#include <boost/config.hpp>
#include <boost/tuple/tuple.hpp>
#if !defined BOOST_NO_SLIST
# ifdef BOOST_SLIST_HEADER
# include BOOST_SLIST_HEADER
# else
# include <slist>
# endif
#endif
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/pending/container_traits.hpp>
#include <boost/graph/depth_first_search.hpp>
// iota moved to detail/algorithm.hpp
#include <boost/detail/algorithm.hpp>
namespace boost {
// Provide an undirected graph interface alternative to the
// the source() and target() edge functions.
template <class UndirectedGraph>
inline
std::pair<typename graph_traits<UndirectedGraph>::vertex_descriptor,
typename graph_traits<UndirectedGraph>::vertex_descriptor>
incident(typename graph_traits<UndirectedGraph>::edge_descriptor e,
UndirectedGraph& g)
{
return std::make_pair(source(e,g), target(e,g));
}
// Provide an undirected graph interface alternative
// to the out_edges() function.
template <class Graph>
inline
std::pair<typename graph_traits<Graph>::out_edge_iterator,
typename graph_traits<Graph>::out_edge_iterator>
incident_edges(typename graph_traits<Graph>::vertex_descriptor u,
Graph& g)
{
return out_edges(u, g);
}
template <class Graph>
inline typename graph_traits<Graph>::vertex_descriptor
opposite(typename graph_traits<Graph>::edge_descriptor e,
typename graph_traits<Graph>::vertex_descriptor v,
const Graph& g)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
if (v == source(e, g))
return target(e, g);
else if (v == target(e, g))
return source(e, g);
else
return vertex_descriptor();
}
//===========================================================================
// Some handy predicates
template <typename Vertex, typename Graph>
struct incident_from_predicate {
incident_from_predicate(Vertex u, const Graph& g)
: m_u(u), m_g(g) { }
template <class Edge>
bool operator()(const Edge& e) const {
return source(e, m_g) == m_u;
}
Vertex m_u;
const Graph& m_g;
};
template <typename Vertex, typename Graph>
inline incident_from_predicate<Vertex, Graph>
incident_from(Vertex u, const Graph& g) {
return incident_from_predicate<Vertex, Graph>(u, g);
}
template <typename Vertex, typename Graph>
struct incident_to_predicate {
incident_to_predicate(Vertex u, const Graph& g)
: m_u(u), m_g(g) { }
template <class Edge>
bool operator()(const Edge& e) const {
return target(e, m_g) == m_u;
}
Vertex m_u;
const Graph& m_g;
};
template <typename Vertex, typename Graph>
inline incident_to_predicate<Vertex, Graph>
incident_to(Vertex u, const Graph& g) {
return incident_to_predicate<Vertex, Graph>(u, g);
}
template <typename Vertex, typename Graph>
struct incident_on_predicate {
incident_on_predicate(Vertex u, const Graph& g)
: m_u(u), m_g(g) { }
template <class Edge>
bool operator()(const Edge& e) const {
return source(e, m_g) == m_u || target(e, m_g) == m_u;
}
Vertex m_u;
const Graph& m_g;
};
template <typename Vertex, typename Graph>
inline incident_on_predicate<Vertex, Graph>
incident_on(Vertex u, const Graph& g) {
return incident_on_predicate<Vertex, Graph>(u, g);
}
template <typename Vertex, typename Graph>
struct connects_predicate {
connects_predicate(Vertex u, Vertex v, const Graph& g)
: m_u(u), m_v(v), m_g(g) { }
template <class Edge>
bool operator()(const Edge& e) const {
if (is_directed(m_g))
return source(e, m_g) == m_u && target(e, m_g) == m_v;
else
return (source(e, m_g) == m_u && target(e, m_g) == m_v)
|| (source(e, m_g) == m_v && target(e, m_g) == m_u);
}
Vertex m_u, m_v;
const Graph& m_g;
};
template <typename Vertex, typename Graph>
inline connects_predicate<Vertex, Graph>
connects(Vertex u, Vertex v, const Graph& g) {
return connects_predicate<Vertex, Graph>(u, v, g);
}
// Need to convert all of these printing functions to take an ostream object
// -JGS
template <class IncidenceGraph, class Name>
void print_in_edges(const IncidenceGraph& G, Name name)
{
typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end;
for (boost::tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) {
std::cout << get(name,*ui) << " <-- ";
typename graph_traits<IncidenceGraph>
::in_edge_iterator ei, ei_end;
for(boost::tie(ei,ei_end) = in_edges(*ui,G); ei != ei_end; ++ei)
std::cout << get(name,source(*ei,G)) << " ";
std::cout << std::endl;
}
}
template <class IncidenceGraph, class Name>
void print_graph_dispatch(const IncidenceGraph& G, Name name, directed_tag)
{
typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end;
for (boost::tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) {
std::cout << get(name,*ui) << " --> ";
typename graph_traits<IncidenceGraph>
::out_edge_iterator ei, ei_end;
for(boost::tie(ei,ei_end) = out_edges(*ui,G); ei != ei_end; ++ei)
std::cout << get(name,target(*ei,G)) << " ";
std::cout << std::endl;
}
}
template <class IncidenceGraph, class Name>
void print_graph_dispatch(const IncidenceGraph& G, Name name, undirected_tag)
{
typename graph_traits<IncidenceGraph>::vertex_iterator ui,ui_end;
for (boost::tie(ui,ui_end) = vertices(G); ui != ui_end; ++ui) {
std::cout << get(name,*ui) << " <--> ";
typename graph_traits<IncidenceGraph>
::out_edge_iterator ei, ei_end;
for(boost::tie(ei,ei_end) = out_edges(*ui,G); ei != ei_end; ++ei)
std::cout << get(name,target(*ei,G)) << " ";
std::cout << std::endl;
}
}
template <class IncidenceGraph, class Name>
void print_graph(const IncidenceGraph& G, Name name)
{
typedef typename graph_traits<IncidenceGraph>
::directed_category Cat;
print_graph_dispatch(G, name, Cat());
}
template <class IncidenceGraph>
void print_graph(const IncidenceGraph& G) {
print_graph(G, get(vertex_index, G));
}
template <class EdgeListGraph, class Name>
void print_edges(const EdgeListGraph& G, Name name)
{
typename graph_traits<EdgeListGraph>::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(G); ei != ei_end; ++ei)
std::cout << "(" << get(name, source(*ei, G))
<< "," << get(name, target(*ei, G)) << ") ";
std::cout << std::endl;
}
template <class EdgeListGraph, class VertexName, class EdgeName>
void print_edges2(const EdgeListGraph& G, VertexName vname, EdgeName ename)
{
typename graph_traits<EdgeListGraph>::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(G); ei != ei_end; ++ei)
std::cout << get(ename, *ei) << "(" << get(vname, source(*ei, G))
<< "," << get(vname, target(*ei, G)) << ") ";
std::cout << std::endl;
}
template <class VertexListGraph, class Name>
void print_vertices(const VertexListGraph& G, Name name)
{
typename graph_traits<VertexListGraph>::vertex_iterator vi,vi_end;
for (boost::tie(vi,vi_end) = vertices(G); vi != vi_end; ++vi)
std::cout << get(name,*vi) << " ";
std::cout << std::endl;
}
template <class Graph, class Vertex>
bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, bidirectional_tag)
{
typedef typename graph_traits<Graph>::edge_descriptor
edge_descriptor;
typename graph_traits<Graph>::adjacency_iterator vi, viend,
adj_found;
boost::tie(vi, viend) = adjacent_vertices(a, g);
adj_found = std::find(vi, viend, b);
if (adj_found == viend)
return false;
typename graph_traits<Graph>::out_edge_iterator oi, oiend,
out_found;
boost::tie(oi, oiend) = out_edges(a, g);
out_found = std::find_if(oi, oiend, incident_to(b, g));
if (out_found == oiend)
return false;
typename graph_traits<Graph>::in_edge_iterator ii, iiend,
in_found;
boost::tie(ii, iiend) = in_edges(b, g);
in_found = std::find_if(ii, iiend, incident_from(a, g));
if (in_found == iiend)
return false;
return true;
}
template <class Graph, class Vertex>
bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, directed_tag)
{
typedef typename graph_traits<Graph>::edge_descriptor
edge_descriptor;
typename graph_traits<Graph>::adjacency_iterator vi, viend, found;
boost::tie(vi, viend) = adjacent_vertices(a, g);
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 && defined(__SGI_STL_PORT)
// Getting internal compiler error with std::find()
found = viend;
for (; vi != viend; ++vi)
if (*vi == b) {
found = vi;
break;
}
#else
found = std::find(vi, viend, b);
#endif
if ( found == viend )
return false;
typename graph_traits<Graph>::out_edge_iterator oi, oiend,
out_found;
boost::tie(oi, oiend) = out_edges(a, g);
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 && defined(__SGI_STL_PORT)
// Getting internal compiler error with std::find()
out_found = oiend;
for (; oi != oiend; ++oi)
if (target(*oi, g) == b) {
out_found = oi;
break;
}
#else
out_found = std::find_if(oi, oiend, incident_to(b, g));
#endif
if (out_found == oiend)
return false;
return true;
}
template <class Graph, class Vertex>
bool is_adj_dispatch(Graph& g, Vertex a, Vertex b, undirected_tag)
{
return is_adj_dispatch(g, a, b, directed_tag());
}
template <class Graph, class Vertex>
bool is_adjacent(Graph& g, Vertex a, Vertex b) {
typedef typename graph_traits<Graph>::directed_category Cat;
return is_adj_dispatch(g, a, b, Cat());
}
template <class Graph, class Edge>
bool in_edge_set(Graph& g, Edge e)
{
typename Graph::edge_iterator ei, ei_end, found;
boost::tie(ei, ei_end) = edges(g);
found = std::find(ei, ei_end, e);
return found != ei_end;
}
template <class Graph, class Vertex>
bool in_vertex_set(Graph& g, Vertex v)
{
typename Graph::vertex_iterator vi, vi_end, found;
boost::tie(vi, vi_end) = vertices(g);
found = std::find(vi, vi_end, v);
return found != vi_end;
}
template <class Graph, class Vertex>
bool in_edge_set(Graph& g, Vertex u, Vertex v)
{
typename Graph::edge_iterator ei, ei_end;
for (boost::tie(ei,ei_end) = edges(g); ei != ei_end; ++ei)
if (source(*ei,g) == u && target(*ei,g) == v)
return true;
return false;
}
// is x a descendant of y?
template <typename ParentMap>
inline bool is_descendant
(typename property_traits<ParentMap>::value_type x,
typename property_traits<ParentMap>::value_type y,
ParentMap parent)
{
if (get(parent, x) == x) // x is the root of the tree
return false;
else if (get(parent, x) == y)
return true;
else
return is_descendant(get(parent, x), y, parent);
}
// is y reachable from x?
template <typename IncidenceGraph, typename VertexColorMap>
inline bool is_reachable
(typename graph_traits<IncidenceGraph>::vertex_descriptor x,
typename graph_traits<IncidenceGraph>::vertex_descriptor y,
const IncidenceGraph& g,
VertexColorMap color) // should start out white for every vertex
{
typedef typename property_traits<VertexColorMap>::value_type ColorValue;
dfs_visitor<> vis;
depth_first_visit(g, x, vis, color);
return get(color, y) != color_traits<ColorValue>::white();
}
// Is the undirected graph connected?
// Is the directed graph strongly connected?
template <typename VertexListGraph, typename VertexColorMap>
inline bool is_connected(const VertexListGraph& g, VertexColorMap color)
{
typedef typename property_traits<VertexColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
typename graph_traits<VertexListGraph>::vertex_iterator
ui, ui_end, vi, vi_end, ci, ci_end;
for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui)
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
if (*ui != *vi) {
for (boost::tie(ci, ci_end) = vertices(g); ci != ci_end; ++ci)
put(color, *ci, Color::white());
if (! is_reachable(*ui, *vi, g, color))
return false;
}
return true;
}
template <typename Graph>
bool is_self_loop
(typename graph_traits<Graph>::edge_descriptor e,
const Graph& g)
{
return source(e, g) == target(e, g);
}
template <class T1, class T2>
std::pair<T1,T2>
make_list(const T1& t1, const T2& t2)
{ return std::make_pair(t1, t2); }
template <class T1, class T2, class T3>
std::pair<T1,std::pair<T2,T3> >
make_list(const T1& t1, const T2& t2, const T3& t3)
{ return std::make_pair(t1, std::make_pair(t2, t3)); }
template <class T1, class T2, class T3, class T4>
std::pair<T1,std::pair<T2,std::pair<T3,T4> > >
make_list(const T1& t1, const T2& t2, const T3& t3, const T4& t4)
{ return std::make_pair(t1, std::make_pair(t2, std::make_pair(t3, t4))); }
template <class T1, class T2, class T3, class T4, class T5>
std::pair<T1,std::pair<T2,std::pair<T3,std::pair<T4,T5> > > >
make_list(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5)
{ return std::make_pair(t1, std::make_pair(t2, std::make_pair(t3, std::make_pair(t4, t5)))); }
namespace graph {
// Functor for remove_parallel_edges: edge property of the removed edge is added to the remaining
template <typename EdgeProperty>
struct add_removed_edge_property
{
add_removed_edge_property(EdgeProperty ep) : ep(ep) {}
template <typename Edge>
void operator() (Edge stay, Edge away)
{
put(ep, stay, get(ep, stay) + get(ep, away));
}
EdgeProperty ep;
};
// Same as above: edge property is capacity here
template <typename Graph>
struct add_removed_edge_capacity
: add_removed_edge_property<typename property_map<Graph, edge_capacity_t>::type>
{
typedef add_removed_edge_property<typename property_map<Graph, edge_capacity_t>::type> base;
add_removed_edge_capacity(Graph& g) : base(get(edge_capacity, g)) {}
};
template <typename Graph>
bool has_no_vertices(const Graph& g) {
typedef typename boost::graph_traits<Graph>::vertex_iterator vi;
std::pair<vi, vi> p = vertices(g);
return (p.first == p.second);
}
template <typename Graph>
bool has_no_edges(const Graph& g) {
typedef typename boost::graph_traits<Graph>::edge_iterator ei;
std::pair<ei, ei> p = edges(g);
return (p.first == p.second);
}
template <typename Graph>
bool has_no_out_edges(const typename boost::graph_traits<Graph>::vertex_descriptor& v, const Graph& g) {
typedef typename boost::graph_traits<Graph>::out_edge_iterator ei;
std::pair<ei, ei> p = out_edges(v, g);
return (p.first == p.second);
}
} // namespace graph
#include <boost/graph/iteration_macros.hpp>
template <class PropertyIn, class PropertyOut, class Graph>
void copy_vertex_property(PropertyIn p_in, PropertyOut p_out, Graph& g)
{
BGL_FORALL_VERTICES_T(u, g, Graph)
put(p_out, u, get(p_in, g));
}
template <class PropertyIn, class PropertyOut, class Graph>
void copy_edge_property(PropertyIn p_in, PropertyOut p_out, Graph& g)
{
BGL_FORALL_EDGES_T(e, g, Graph)
put(p_out, e, get(p_in, g));
}
// Return true if property_map1 and property_map2 differ
// for any of the vertices in graph.
template <typename PropertyMapFirst,
typename PropertyMapSecond,
typename Graph>
bool are_property_maps_different
(const PropertyMapFirst property_map1,
const PropertyMapSecond property_map2,
const Graph& graph) {
BGL_FORALL_VERTICES_T(vertex, graph, Graph) {
if (get(property_map1, vertex) !=
get(property_map2, vertex)) {
return (true);
}
}
return (false);
}
} /* namespace boost */
#endif /* BOOST_GRAPH_UTILITY_HPP*/