boost/interprocess/detail/segment_manager_helper.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_BASE_HPP
#define BOOST_INTERPROCESS_SEGMENT_MANAGER_BASE_HPP
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/interprocess/detail/type_traits.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/in_place_interface.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <cstddef> //std::size_t
#include <string> //char_traits
#include <new> //std::nothrow
#include <utility> //std::pair
#include <boost/assert.hpp> //BOOST_ASSERT
#include <functional> //unary_function
#ifndef BOOST_NO_EXCEPTIONS
#include <exception>
#endif
//!\file
//!Describes the object placed in a memory segment that provides
//!named object allocation capabilities.
namespace boost{
namespace interprocess{
template<class MemoryManager>
class segment_manager_base;
//!An integer that describes the type of the
//!instance constructed in memory
enum instance_type { anonymous_type, named_type, unique_type, max_allocation_type };
namespace ipcdetail{
template<class MemoryAlgorithm>
class mem_algo_deallocator
{
void * m_ptr;
MemoryAlgorithm & m_algo;
public:
mem_algo_deallocator(void *ptr, MemoryAlgorithm &algo)
: m_ptr(ptr), m_algo(algo)
{}
void release()
{ m_ptr = 0; }
~mem_algo_deallocator()
{ if(m_ptr) m_algo.deallocate(m_ptr); }
};
/// @cond
template<class size_type>
struct block_header
{
size_type m_value_bytes;
unsigned short m_num_char;
unsigned char m_value_alignment;
unsigned char m_alloc_type_sizeof_char;
block_header(size_type value_bytes
,size_type value_alignment
,unsigned char alloc_type
,std::size_t sizeof_char
,std::size_t num_char
)
: m_value_bytes(value_bytes)
, m_num_char((unsigned short)num_char)
, m_value_alignment((unsigned char)value_alignment)
, m_alloc_type_sizeof_char
( (alloc_type << 5u) |
((unsigned char)sizeof_char & 0x1F) )
{};
template<class T>
block_header &operator= (const T& )
{ return *this; }
size_type total_size() const
{
if(alloc_type() != anonymous_type){
return name_offset() + (m_num_char+1)*sizeof_char();
}
else{
return this->value_offset() + m_value_bytes;
}
}
size_type value_bytes() const
{ return m_value_bytes; }
template<class Header>
size_type total_size_with_header() const
{
return get_rounded_size
( size_type(sizeof(Header))
, size_type(::boost::alignment_of<block_header<size_type> >::value))
+ total_size();
}
unsigned char alloc_type() const
{ return (m_alloc_type_sizeof_char >> 5u)&(unsigned char)0x7; }
unsigned char sizeof_char() const
{ return m_alloc_type_sizeof_char & (unsigned char)0x1F; }
template<class CharType>
CharType *name() const
{
return const_cast<CharType*>(reinterpret_cast<const CharType*>
(reinterpret_cast<const char*>(this) + name_offset()));
}
unsigned short name_length() const
{ return m_num_char; }
size_type name_offset() const
{
return this->value_offset() + get_rounded_size(size_type(m_value_bytes), size_type(sizeof_char()));
}
void *value() const
{
return const_cast<char*>((reinterpret_cast<const char*>(this) + this->value_offset()));
}
size_type value_offset() const
{
return get_rounded_size(size_type(sizeof(block_header<size_type>)), size_type(m_value_alignment));
}
template<class CharType>
bool less_comp(const block_header<size_type> &b) const
{
return m_num_char < b.m_num_char ||
(m_num_char < b.m_num_char &&
std::char_traits<CharType>::compare
(name<CharType>(), b.name<CharType>(), m_num_char) < 0);
}
template<class CharType>
bool equal_comp(const block_header<size_type> &b) const
{
return m_num_char == b.m_num_char &&
std::char_traits<CharType>::compare
(name<CharType>(), b.name<CharType>(), m_num_char) == 0;
}
template<class T>
static block_header<size_type> *block_header_from_value(T *value)
{ return block_header_from_value(value, sizeof(T), ::boost::alignment_of<T>::value); }
static block_header<size_type> *block_header_from_value(const void *value, std::size_t sz, std::size_t algn)
{
block_header * hdr =
const_cast<block_header*>
(reinterpret_cast<const block_header*>(reinterpret_cast<const char*>(value) -
get_rounded_size(sizeof(block_header), algn)));
(void)sz;
//Some sanity checks
BOOST_ASSERT(hdr->m_value_alignment == algn);
BOOST_ASSERT(hdr->m_value_bytes % sz == 0);
return hdr;
}
template<class Header>
static block_header<size_type> *from_first_header(Header *header)
{
block_header<size_type> * hdr =
reinterpret_cast<block_header<size_type>*>(reinterpret_cast<char*>(header) +
get_rounded_size(size_type(sizeof(Header)), size_type(::boost::alignment_of<block_header<size_type> >::value)));
//Some sanity checks
return hdr;
}
template<class Header>
static Header *to_first_header(block_header<size_type> *bheader)
{
Header * hdr =
reinterpret_cast<Header*>(reinterpret_cast<char*>(bheader) -
get_rounded_size(size_type(sizeof(Header)), size_type(::boost::alignment_of<block_header<size_type> >::value)));
//Some sanity checks
return hdr;
}
};
inline void array_construct(void *mem, std::size_t num, in_place_interface &table)
{
//Try constructors
std::size_t constructed = 0;
BOOST_TRY{
table.construct_n(mem, num, constructed);
}
//If there is an exception call destructors and erase index node
BOOST_CATCH(...){
std::size_t destroyed = 0;
table.destroy_n(mem, constructed, destroyed);
BOOST_RETHROW
}
BOOST_CATCH_END
}
template<class CharT>
struct intrusive_compare_key
{
typedef CharT char_type;
intrusive_compare_key(const CharT *str, std::size_t len)
: mp_str(str), m_len(len)
{}
const CharT * mp_str;
std::size_t m_len;
};
//!This struct indicates an anonymous object creation
//!allocation
template<instance_type type>
class instance_t
{
instance_t(){}
};
template<class T>
struct char_if_void
{
typedef T type;
};
template<>
struct char_if_void<void>
{
typedef char type;
};
typedef instance_t<anonymous_type> anonymous_instance_t;
typedef instance_t<unique_type> unique_instance_t;
template<class Hook, class CharType, class SizeType>
struct intrusive_value_type_impl
: public Hook
{
private:
//Non-copyable
intrusive_value_type_impl(const intrusive_value_type_impl &);
intrusive_value_type_impl& operator=(const intrusive_value_type_impl &);
public:
typedef CharType char_type;
typedef SizeType size_type;
intrusive_value_type_impl(){}
enum { BlockHdrAlignment = ::boost::alignment_of<block_header<size_type> >::value };
block_header<size_type> *get_block_header() const
{
return const_cast<block_header<size_type>*>
(reinterpret_cast<const block_header<size_type> *>(reinterpret_cast<const char*>(this) +
get_rounded_size(size_type(sizeof(*this)), size_type(BlockHdrAlignment))));
}
bool operator <(const intrusive_value_type_impl<Hook, CharType, SizeType> & other) const
{ return (this->get_block_header())->template less_comp<CharType>(*other.get_block_header()); }
bool operator ==(const intrusive_value_type_impl<Hook, CharType, SizeType> & other) const
{ return (this->get_block_header())->template equal_comp<CharType>(*other.get_block_header()); }
static intrusive_value_type_impl *get_intrusive_value_type(block_header<size_type> *hdr)
{
return reinterpret_cast<intrusive_value_type_impl *>(reinterpret_cast<char*>(hdr) -
get_rounded_size(size_type(sizeof(intrusive_value_type_impl)), size_type(BlockHdrAlignment)));
}
CharType *name() const
{ return get_block_header()->template name<CharType>(); }
unsigned short name_length() const
{ return get_block_header()->name_length(); }
void *value() const
{ return get_block_header()->value(); }
};
template<class CharType>
class char_ptr_holder
{
public:
char_ptr_holder(const CharType *name)
: m_name(name)
{}
char_ptr_holder(const anonymous_instance_t *)
: m_name(static_cast<CharType*>(0))
{}
char_ptr_holder(const unique_instance_t *)
: m_name(reinterpret_cast<CharType*>(-1))
{}
operator const CharType *()
{ return m_name; }
private:
const CharType *m_name;
};
//!The key of the the named allocation information index. Stores an offset pointer
//!to a null terminated string and the length of the string to speed up sorting
template<class CharT, class VoidPointer>
struct index_key
{
typedef typename boost::intrusive::
pointer_traits<VoidPointer>::template
rebind_pointer<const CharT>::type const_char_ptr_t;
typedef CharT char_type;
typedef typename boost::intrusive::pointer_traits<const_char_ptr_t>::difference_type difference_type;
typedef typename boost::make_unsigned<difference_type>::type size_type;
private:
//Offset pointer to the object's name
const_char_ptr_t mp_str;
//Length of the name buffer (null NOT included)
size_type m_len;
public:
//!Constructor of the key
index_key (const char_type *name, size_type length)
: mp_str(name), m_len(length) {}
//!Less than function for index ordering
bool operator < (const index_key & right) const
{
return (m_len < right.m_len) ||
(m_len == right.m_len &&
std::char_traits<char_type>::compare
(to_raw_pointer(mp_str)
,to_raw_pointer(right.mp_str), m_len) < 0);
}
//!Equal to function for index ordering
bool operator == (const index_key & right) const
{
return m_len == right.m_len &&
std::char_traits<char_type>::compare
(to_raw_pointer(mp_str),
to_raw_pointer(right.mp_str), m_len) == 0;
}
void name(const CharT *name)
{ mp_str = name; }
void name_length(size_type len)
{ m_len = len; }
const CharT *name() const
{ return to_raw_pointer(mp_str); }
size_type name_length() const
{ return m_len; }
};
//!The index_data stores a pointer to a buffer and the element count needed
//!to know how many destructors must be called when calling destroy
template<class VoidPointer>
struct index_data
{
typedef VoidPointer void_pointer;
void_pointer m_ptr;
index_data(void *ptr) : m_ptr(ptr){}
void *value() const
{ return static_cast<void*>(to_raw_pointer(m_ptr)); }
};
template<class MemoryAlgorithm>
struct segment_manager_base_type
{ typedef segment_manager_base<MemoryAlgorithm> type; };
template<class CharT, class MemoryAlgorithm>
struct index_config
{
typedef typename MemoryAlgorithm::void_pointer void_pointer;
typedef CharT char_type;
typedef index_key<CharT, void_pointer> key_type;
typedef index_data<void_pointer> mapped_type;
typedef typename segment_manager_base_type
<MemoryAlgorithm>::type segment_manager_base;
template<class HeaderBase>
struct intrusive_value_type
{ typedef intrusive_value_type_impl<HeaderBase, CharT, typename segment_manager_base::size_type> type; };
typedef intrusive_compare_key<CharT> intrusive_compare_key_type;
};
template<class Iterator, bool intrusive>
class segment_manager_iterator_value_adaptor
{
typedef typename Iterator::value_type iterator_val_t;
typedef typename iterator_val_t::char_type char_type;
public:
segment_manager_iterator_value_adaptor(const typename Iterator::value_type &val)
: m_val(&val)
{}
const char_type *name() const
{ return m_val->name(); }
unsigned short name_length() const
{ return m_val->name_length(); }
const void *value() const
{ return m_val->value(); }
const typename Iterator::value_type *m_val;
};
template<class Iterator>
class segment_manager_iterator_value_adaptor<Iterator, false>
{
typedef typename Iterator::value_type iterator_val_t;
typedef typename iterator_val_t::first_type first_type;
typedef typename iterator_val_t::second_type second_type;
typedef typename first_type::char_type char_type;
typedef typename first_type::size_type size_type;
public:
segment_manager_iterator_value_adaptor(const typename Iterator::value_type &val)
: m_val(&val)
{}
const char_type *name() const
{ return m_val->first.name(); }
size_type name_length() const
{ return m_val->first.name_length(); }
const void *value() const
{
return reinterpret_cast<block_header<size_type>*>
(to_raw_pointer(m_val->second.m_ptr))->value();
}
const typename Iterator::value_type *m_val;
};
template<class Iterator, bool intrusive>
struct segment_manager_iterator_transform
: std::unary_function< typename Iterator::value_type
, segment_manager_iterator_value_adaptor<Iterator, intrusive> >
{
typedef segment_manager_iterator_value_adaptor<Iterator, intrusive> result_type;
result_type operator()(const typename Iterator::value_type &arg) const
{ return result_type(arg); }
};
} //namespace ipcdetail {
//These pointers are the ones the user will use to
//indicate previous allocation types
static const ipcdetail::anonymous_instance_t * anonymous_instance = 0;
static const ipcdetail::unique_instance_t * unique_instance = 0;
namespace ipcdetail_really_deep_namespace {
//Otherwise, gcc issues a warning of previously defined
//anonymous_instance and unique_instance
struct dummy
{
dummy()
{
(void)anonymous_instance;
(void)unique_instance;
}
};
} //detail_really_deep_namespace
}} //namespace boost { namespace interprocess
#include <boost/interprocess/detail/config_end.hpp>
#endif //#ifndef BOOST_INTERPROCESS_SEGMENT_MANAGER_BASE_HPP