boost/asio/detail/impl/task_io_service.ipp
//
// detail/impl/task_io_service.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2015 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP
#define BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if !defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/event.hpp>
#include <boost/asio/detail/limits.hpp>
#include <boost/asio/detail/reactor.hpp>
#include <boost/asio/detail/task_io_service.hpp>
#include <boost/asio/detail/task_io_service_thread_info.hpp>
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
struct task_io_service::task_cleanup
{
~task_cleanup()
{
if (this_thread_->private_outstanding_work > 0)
{
boost::asio::detail::increment(
task_io_service_->outstanding_work_,
this_thread_->private_outstanding_work);
}
this_thread_->private_outstanding_work = 0;
// Enqueue the completed operations and reinsert the task at the end of
// the operation queue.
lock_->lock();
task_io_service_->task_interrupted_ = true;
task_io_service_->op_queue_.push(this_thread_->private_op_queue);
task_io_service_->op_queue_.push(&task_io_service_->task_operation_);
}
task_io_service* task_io_service_;
mutex::scoped_lock* lock_;
thread_info* this_thread_;
};
struct task_io_service::work_cleanup
{
~work_cleanup()
{
if (this_thread_->private_outstanding_work > 1)
{
boost::asio::detail::increment(
task_io_service_->outstanding_work_,
this_thread_->private_outstanding_work - 1);
}
else if (this_thread_->private_outstanding_work < 1)
{
task_io_service_->work_finished();
}
this_thread_->private_outstanding_work = 0;
#if defined(BOOST_ASIO_HAS_THREADS)
if (!this_thread_->private_op_queue.empty())
{
lock_->lock();
task_io_service_->op_queue_.push(this_thread_->private_op_queue);
}
#endif // defined(BOOST_ASIO_HAS_THREADS)
}
task_io_service* task_io_service_;
mutex::scoped_lock* lock_;
thread_info* this_thread_;
};
task_io_service::task_io_service(
boost::asio::io_service& io_service, std::size_t concurrency_hint)
: boost::asio::detail::service_base<task_io_service>(io_service),
one_thread_(concurrency_hint == 1),
mutex_(),
task_(0),
task_interrupted_(true),
outstanding_work_(0),
stopped_(false),
shutdown_(false)
{
BOOST_ASIO_HANDLER_TRACKING_INIT;
}
void task_io_service::shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
// Destroy handler objects.
while (!op_queue_.empty())
{
operation* o = op_queue_.front();
op_queue_.pop();
if (o != &task_operation_)
o->destroy();
}
// Reset to initial state.
task_ = 0;
}
void task_io_service::init_task()
{
mutex::scoped_lock lock(mutex_);
if (!shutdown_ && !task_)
{
task_ = &use_service<reactor>(this->get_io_service());
op_queue_.push(&task_operation_);
wake_one_thread_and_unlock(lock);
}
}
std::size_t task_io_service::run(boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (outstanding_work_ == 0)
{
stop();
return 0;
}
thread_info this_thread;
this_thread.private_outstanding_work = 0;
thread_call_stack::context ctx(this, this_thread);
mutex::scoped_lock lock(mutex_);
std::size_t n = 0;
for (; do_run_one(lock, this_thread, ec); lock.lock())
if (n != (std::numeric_limits<std::size_t>::max)())
++n;
return n;
}
std::size_t task_io_service::run_one(boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (outstanding_work_ == 0)
{
stop();
return 0;
}
thread_info this_thread;
this_thread.private_outstanding_work = 0;
thread_call_stack::context ctx(this, this_thread);
mutex::scoped_lock lock(mutex_);
return do_run_one(lock, this_thread, ec);
}
std::size_t task_io_service::poll(boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (outstanding_work_ == 0)
{
stop();
return 0;
}
thread_info this_thread;
this_thread.private_outstanding_work = 0;
thread_call_stack::context ctx(this, this_thread);
mutex::scoped_lock lock(mutex_);
#if defined(BOOST_ASIO_HAS_THREADS)
// We want to support nested calls to poll() and poll_one(), so any handlers
// that are already on a thread-private queue need to be put on to the main
// queue now.
if (one_thread_)
if (thread_info* outer_thread_info = ctx.next_by_key())
op_queue_.push(outer_thread_info->private_op_queue);
#endif // defined(BOOST_ASIO_HAS_THREADS)
std::size_t n = 0;
for (; do_poll_one(lock, this_thread, ec); lock.lock())
if (n != (std::numeric_limits<std::size_t>::max)())
++n;
return n;
}
std::size_t task_io_service::poll_one(boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (outstanding_work_ == 0)
{
stop();
return 0;
}
thread_info this_thread;
this_thread.private_outstanding_work = 0;
thread_call_stack::context ctx(this, this_thread);
mutex::scoped_lock lock(mutex_);
#if defined(BOOST_ASIO_HAS_THREADS)
// We want to support nested calls to poll() and poll_one(), so any handlers
// that are already on a thread-private queue need to be put on to the main
// queue now.
if (one_thread_)
if (thread_info* outer_thread_info = ctx.next_by_key())
op_queue_.push(outer_thread_info->private_op_queue);
#endif // defined(BOOST_ASIO_HAS_THREADS)
return do_poll_one(lock, this_thread, ec);
}
void task_io_service::stop()
{
mutex::scoped_lock lock(mutex_);
stop_all_threads(lock);
}
bool task_io_service::stopped() const
{
mutex::scoped_lock lock(mutex_);
return stopped_;
}
void task_io_service::reset()
{
mutex::scoped_lock lock(mutex_);
stopped_ = false;
}
void task_io_service::post_immediate_completion(
task_io_service::operation* op, bool is_continuation)
{
#if defined(BOOST_ASIO_HAS_THREADS)
if (one_thread_ || is_continuation)
{
if (thread_info* this_thread = thread_call_stack::contains(this))
{
++this_thread->private_outstanding_work;
this_thread->private_op_queue.push(op);
return;
}
}
#else // defined(BOOST_ASIO_HAS_THREADS)
(void)is_continuation;
#endif // defined(BOOST_ASIO_HAS_THREADS)
work_started();
mutex::scoped_lock lock(mutex_);
op_queue_.push(op);
wake_one_thread_and_unlock(lock);
}
void task_io_service::post_deferred_completion(task_io_service::operation* op)
{
#if defined(BOOST_ASIO_HAS_THREADS)
if (one_thread_)
{
if (thread_info* this_thread = thread_call_stack::contains(this))
{
this_thread->private_op_queue.push(op);
return;
}
}
#endif // defined(BOOST_ASIO_HAS_THREADS)
mutex::scoped_lock lock(mutex_);
op_queue_.push(op);
wake_one_thread_and_unlock(lock);
}
void task_io_service::post_deferred_completions(
op_queue<task_io_service::operation>& ops)
{
if (!ops.empty())
{
#if defined(BOOST_ASIO_HAS_THREADS)
if (one_thread_)
{
if (thread_info* this_thread = thread_call_stack::contains(this))
{
this_thread->private_op_queue.push(ops);
return;
}
}
#endif // defined(BOOST_ASIO_HAS_THREADS)
mutex::scoped_lock lock(mutex_);
op_queue_.push(ops);
wake_one_thread_and_unlock(lock);
}
}
void task_io_service::do_dispatch(
task_io_service::operation* op)
{
work_started();
mutex::scoped_lock lock(mutex_);
op_queue_.push(op);
wake_one_thread_and_unlock(lock);
}
void task_io_service::abandon_operations(
op_queue<task_io_service::operation>& ops)
{
op_queue<task_io_service::operation> ops2;
ops2.push(ops);
}
std::size_t task_io_service::do_run_one(mutex::scoped_lock& lock,
task_io_service::thread_info& this_thread,
const boost::system::error_code& ec)
{
while (!stopped_)
{
if (!op_queue_.empty())
{
// Prepare to execute first handler from queue.
operation* o = op_queue_.front();
op_queue_.pop();
bool more_handlers = (!op_queue_.empty());
if (o == &task_operation_)
{
task_interrupted_ = more_handlers;
if (more_handlers && !one_thread_)
wakeup_event_.unlock_and_signal_one(lock);
else
lock.unlock();
task_cleanup on_exit = { this, &lock, &this_thread };
(void)on_exit;
// Run the task. May throw an exception. Only block if the operation
// queue is empty and we're not polling, otherwise we want to return
// as soon as possible.
task_->run(!more_handlers, this_thread.private_op_queue);
}
else
{
std::size_t task_result = o->task_result_;
if (more_handlers && !one_thread_)
wake_one_thread_and_unlock(lock);
else
lock.unlock();
// Ensure the count of outstanding work is decremented on block exit.
work_cleanup on_exit = { this, &lock, &this_thread };
(void)on_exit;
// Complete the operation. May throw an exception. Deletes the object.
o->complete(*this, ec, task_result);
return 1;
}
}
else
{
wakeup_event_.clear(lock);
wakeup_event_.wait(lock);
}
}
return 0;
}
std::size_t task_io_service::do_poll_one(mutex::scoped_lock& lock,
task_io_service::thread_info& this_thread,
const boost::system::error_code& ec)
{
if (stopped_)
return 0;
operation* o = op_queue_.front();
if (o == &task_operation_)
{
op_queue_.pop();
lock.unlock();
{
task_cleanup c = { this, &lock, &this_thread };
(void)c;
// Run the task. May throw an exception. Only block if the operation
// queue is empty and we're not polling, otherwise we want to return
// as soon as possible.
task_->run(false, this_thread.private_op_queue);
}
o = op_queue_.front();
if (o == &task_operation_)
{
wakeup_event_.maybe_unlock_and_signal_one(lock);
return 0;
}
}
if (o == 0)
return 0;
op_queue_.pop();
bool more_handlers = (!op_queue_.empty());
std::size_t task_result = o->task_result_;
if (more_handlers && !one_thread_)
wake_one_thread_and_unlock(lock);
else
lock.unlock();
// Ensure the count of outstanding work is decremented on block exit.
work_cleanup on_exit = { this, &lock, &this_thread };
(void)on_exit;
// Complete the operation. May throw an exception. Deletes the object.
o->complete(*this, ec, task_result);
return 1;
}
void task_io_service::stop_all_threads(
mutex::scoped_lock& lock)
{
stopped_ = true;
wakeup_event_.signal_all(lock);
if (!task_interrupted_ && task_)
{
task_interrupted_ = true;
task_->interrupt();
}
}
void task_io_service::wake_one_thread_and_unlock(
mutex::scoped_lock& lock)
{
if (!wakeup_event_.maybe_unlock_and_signal_one(lock))
{
if (!task_interrupted_ && task_)
{
task_interrupted_ = true;
task_->interrupt();
}
lock.unlock();
}
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // !defined(BOOST_ASIO_HAS_IOCP)
#endif // BOOST_ASIO_DETAIL_IMPL_TASK_IO_SERVICE_IPP