Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/graph/plod_generator.hpp

// Copyright 2004-2006 The Trustees of Indiana University.

// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine
#ifndef BOOST_GRAPH_PLOD_GENERATOR_HPP
#define BOOST_GRAPH_PLOD_GENERATOR_HPP

#include <iterator>
#include <utility>
#include <boost/random/uniform_int.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/graph/graph_traits.hpp>
#include <vector>
#include <map>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/mpl/if.hpp>

namespace boost {
  template<typename RandomGenerator>
  class out_directed_plod_iterator 
  {
  public:
    typedef std::forward_iterator_tag            iterator_category;
    typedef std::pair<std::size_t, std::size_t>  value_type;
    typedef const value_type&                    reference;
    typedef const value_type*                    pointer;
    typedef std::ptrdiff_t                       difference_type;

    out_directed_plod_iterator() : gen(0), at_end(true) { }

    out_directed_plod_iterator(RandomGenerator& gen, std::size_t n,  
                               double alpha, double beta, 
                               bool allow_self_loops)
      : gen(&gen), n(n), alpha(alpha), beta(beta), 
        allow_self_loops(allow_self_loops), at_end(false), degree(0),
        current(0, 0)
    {
      using std::pow;

      uniform_int<std::size_t> x(0, n-1);
      std::size_t xv = x(gen);
      degree = (xv == 0? 0 : std::size_t(beta * pow(xv, -alpha)));
    }

    reference operator*() const { return current; }
    pointer operator->() const { return &current; }

    out_directed_plod_iterator& operator++()
    { 
      using std::pow;

      uniform_int<std::size_t> x(0, n-1);

      // Continue stepping through source nodes until the
      // (out)degree is > 0
      while (degree == 0) {
        // Step to the next source node. If we've gone past the
        // number of nodes we're responsible for, we're done.
        if (++current.first >= n) {
          at_end = true;
          return *this;
        }

        std::size_t xv = x(*gen);
        degree = (xv == 0? 0 : std::size_t(beta * pow(xv, -alpha)));      
      }

      do {
        current.second = x(*gen);
      } while (current.first == current.second && !allow_self_loops);
      --degree;

      return *this;
    }

    out_directed_plod_iterator operator++(int)
    {
      out_directed_plod_iterator temp(*this);
      ++(*this);
      return temp;
    }

    bool operator==(const out_directed_plod_iterator& other) const
    { 
      return at_end == other.at_end; 
    }

    bool operator!=(const out_directed_plod_iterator& other) const
    { 
      return !(*this == other); 
    }

  private:    
    RandomGenerator* gen;
    std::size_t n;
    double alpha;
    double beta;
    bool allow_self_loops;
    bool at_end;
    std::size_t degree;
    value_type current;
  };

  template<typename RandomGenerator>
  class undirected_plod_iterator 
  {
    typedef std::vector<std::pair<std::size_t, std::size_t> > out_degrees_t;

  public:
    typedef std::input_iterator_tag              iterator_category;
    typedef std::pair<std::size_t, std::size_t>  value_type;
    typedef const value_type&                    reference;
    typedef const value_type*                    pointer;
    typedef std::ptrdiff_t                       difference_type;

    undirected_plod_iterator() 
      : gen(0), out_degrees(), degrees_left(0), allow_self_loops(false) { }

    undirected_plod_iterator(RandomGenerator& gen, std::size_t n,  
                             double alpha, double beta, 
                             bool allow_self_loops = false)
      : gen(&gen), n(n), out_degrees(new out_degrees_t),
        degrees_left(0), allow_self_loops(allow_self_loops)
    {
      using std::pow;

      uniform_int<std::size_t> x(0, n-1);
      for (std::size_t i = 0; i != n; ++i) {
        std::size_t xv = x(gen);
        std::size_t degree = (xv == 0? 0 : std::size_t(beta * pow(xv, -alpha)));
        if (degree == 0) degree = 1;
        else if (degree >= n) degree = n-1;
        out_degrees->push_back(std::make_pair(i, degree));
        degrees_left += degree;
      }

      next();
    }

    reference operator*() const { return current; }
    pointer operator->() const { return &current; }

    undirected_plod_iterator& operator++()
    { 
      next();
      return *this;
    }

    undirected_plod_iterator operator++(int)
    {
      undirected_plod_iterator temp(*this);
      ++(*this);
      return temp;
    }

    bool operator==(const undirected_plod_iterator& other) const
    { 
      return degrees_left == other.degrees_left; 
    }

    bool operator!=(const undirected_plod_iterator& other) const
    { return !(*this == other); }

  private:
    void next()
    {
      std::size_t source, target;
      while (true) {
        /* We may get to the point where we can't actually find any
           new edges, so we just add some random edge and set the
           degrees left = 0 to signal termination. */
        if (out_degrees->size() < 2) {
          uniform_int<std::size_t> x(0, n-1);
          current.first  = x(*gen);
          do {
            current.second = x(*gen);
          } while (current.first == current.second && !allow_self_loops);
          degrees_left = 0;
          out_degrees->clear();
          return;
        }

        uniform_int<std::size_t> x(0, out_degrees->size()-1);

        // Select source vertex
        source = x(*gen);
        if ((*out_degrees)[source].second == 0) {
          (*out_degrees)[source] = out_degrees->back();
          out_degrees->pop_back();
          continue;
        } 

        // Select target vertex
        target = x(*gen);
        if ((*out_degrees)[target].second == 0) {
          (*out_degrees)[target] = out_degrees->back();
          out_degrees->pop_back();
          continue;
        } else if (source != target 
                   || (allow_self_loops && (*out_degrees)[source].second > 2)) {
          break;
        }
      }

      // Update degree counts
      --(*out_degrees)[source].second;
      --degrees_left;
      --(*out_degrees)[target].second;
      --degrees_left;
      current.first  = (*out_degrees)[source].first;
      current.second = (*out_degrees)[target].first;
    }

    RandomGenerator* gen;
    std::size_t n;
    shared_ptr<out_degrees_t> out_degrees;
    std::size_t degrees_left;
    bool allow_self_loops;
    value_type current;
  };


  template<typename RandomGenerator, typename Graph>
  class plod_iterator
    : public mpl::if_<is_convertible<
                        typename graph_traits<Graph>::directed_category,
                        directed_tag>,
                      out_directed_plod_iterator<RandomGenerator>,
                      undirected_plod_iterator<RandomGenerator> >::type
  {
    typedef typename mpl::if_<
                       is_convertible<
                         typename graph_traits<Graph>::directed_category,
                         directed_tag>,
                        out_directed_plod_iterator<RandomGenerator>,
                        undirected_plod_iterator<RandomGenerator> >::type
      inherited;

  public:
    plod_iterator() : inherited() { }

    plod_iterator(RandomGenerator& gen, std::size_t n,  
                  double alpha, double beta, bool allow_self_loops = false)
      : inherited(gen, n, alpha, beta, allow_self_loops) { }
  };

} // end namespace boost

#endif // BOOST_GRAPH_PLOD_GENERATOR_HPP