boost/multiprecision/detail/default_ops.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_BIG_NUM_DEF_OPS
#define BOOST_MATH_BIG_NUM_DEF_OPS
#include <boost/math/policies/error_handling.hpp>
#include <boost/multiprecision/detail/number_base.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/front.hpp>
#include <boost/mpl/fold.hpp>
#include <boost/cstdint.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#ifndef INSTRUMENT_BACKEND
#ifndef BOOST_MP_INSTRUMENT
#define INSTRUMENT_BACKEND(x)
#else
#define INSTRUMENT_BACKEND(x)\
std::cout << BOOST_STRINGIZE(x) << " = " << x.str(0, std::ios_base::scientific) << std::endl;
#endif
#endif
namespace boost{ namespace multiprecision{
namespace detail {
template <class T>
struct is_backend;
template <class To, class From>
void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_floating_point>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/);
template <class To, class From>
void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_integer>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/);
template <class To, class From>
void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_floating_point>& /*to_type*/, const mpl::int_<number_kind_floating_point>& /*from_type*/);
template <class To, class From>
void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_rational>& /*to_type*/, const mpl::int_<number_kind_rational>& /*from_type*/);
template <class To, class From>
void generic_interconvert(To& to, const From& from, const mpl::int_<number_kind_rational>& /*to_type*/, const mpl::int_<number_kind_integer>& /*from_type*/);
}
namespace default_ops{
#ifdef BOOST_MSVC
// warning C4127: conditional expression is constant
#pragma warning(push)
#pragma warning(disable:4127)
#endif
//
// Default versions of mixed arithmetic, these just construct a temporary
// from the arithmetic value and then do the arithmetic on that, two versions
// of each depending on whether the backend can be directly constructed from type V.
//
// Note that we have to provide *all* the template parameters to class number when used in
// enable_if as MSVC-10 won't compile the code if we rely on a computed-default parameter.
// Since the result of the test doesn't depend on whether expression templates are on or off
// we just use et_on everywhere. We could use a BOOST_WORKAROUND but that just obfuscates the
// code even more....
//
template <class T, class V>
inline typename disable_if_c<is_convertible<V, T>::value >::type
eval_add(T& result, V const& v)
{
T t;
t = v;
eval_add(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, T>::value >::type
eval_add(T& result, V const& v)
{
T t(v);
eval_add(result, t);
}
template <class T, class V>
inline typename disable_if_c<is_convertible<V, T>::value>::type
eval_subtract(T& result, V const& v)
{
T t;
t = v;
eval_subtract(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, T>::value>::type
eval_subtract(T& result, V const& v)
{
T t(v);
eval_subtract(result, t);
}
template <class T, class V>
inline typename disable_if_c<is_convertible<V, T>::value>::type
eval_multiply(T& result, V const& v)
{
T t;
t = v;
eval_multiply(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, T>::value>::type
eval_multiply(T& result, V const& v)
{
T t(v);
eval_multiply(result, t);
}
template <class T, class U, class V>
void eval_multiply(T& t, const U& u, const V& v);
template <class T, class U, class V>
inline typename disable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_add(T& t, const U& u, const V& v)
{
T z;
eval_multiply(z, u, v);
eval_add(t, z);
}
template <class T, class U, class V>
inline typename enable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_add(T& t, const U& u, const V& v)
{
eval_multiply_add(t, v, u);
}
template <class T, class U, class V>
inline typename disable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_subtract(T& t, const U& u, const V& v)
{
T z;
eval_multiply(z, u, v);
eval_subtract(t, z);
}
template <class T, class U, class V>
inline typename enable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_subtract(T& t, const U& u, const V& v)
{
eval_multiply_subtract(t, v, u);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_divide(T& result, V const& v)
{
T t;
t = v;
eval_divide(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && is_convertible<V, T>::value>::type
eval_divide(T& result, V const& v)
{
T t(v);
eval_divide(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_modulus(T& result, V const& v)
{
T t;
t = v;
eval_modulus(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value&& is_convertible<V, T>::value>::type
eval_modulus(T& result, V const& v)
{
T t(v);
eval_modulus(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_bitwise_and(T& result, V const& v)
{
T t;
t = v;
eval_bitwise_and(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && is_convertible<V, T>::value>::type
eval_bitwise_and(T& result, V const& v)
{
T t(v);
eval_bitwise_and(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_bitwise_or(T& result, V const& v)
{
T t;
t = v;
eval_bitwise_or(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && is_convertible<V, T>::value>::type
eval_bitwise_or(T& result, V const& v)
{
T t(v);
eval_bitwise_or(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_bitwise_xor(T& result, V const& v)
{
T t;
t = v;
eval_bitwise_xor(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && is_convertible<V, T>::value>::type
eval_bitwise_xor(T& result, V const& v)
{
T t(v);
eval_bitwise_xor(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && !is_convertible<V, T>::value>::type
eval_complement(T& result, V const& v)
{
T t;
t = v;
eval_complement(result, t);
}
template <class T, class V>
inline typename enable_if_c<is_convertible<V, number<T, et_on> >::value && is_convertible<V, T>::value>::type
eval_complement(T& result, V const& v)
{
T t(v);
eval_complement(result, t);
}
//
// Default versions of 3-arg arithmetic functions, these mostly just forward to the 2 arg versions:
//
template <class T, class U, class V>
void eval_add(T& t, const U& u, const V& v);
template <class T>
inline void eval_add_default(T& t, const T& u, const T& v)
{
if(&t == &v)
{
eval_add(t, u);
}
else if(&t == &u)
{
eval_add(t, v);
}
else
{
t = u;
eval_add(t, v);
}
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_add_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_add(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_add_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_add(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value>::type eval_add_default(T& t, const U& u, const T& v)
{
eval_add(t, v, u);
}
template <class T, class U, class V>
inline void eval_add_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
eval_add(t, u);
}
else
{
t = u;
eval_add(t, v);
}
}
template <class T, class U, class V>
inline void eval_add(T& t, const U& u, const V& v)
{
eval_add_default(t, u, v);
}
template <class T, class U, class V>
void eval_subtract(T& t, const U& u, const V& v);
template <class T>
inline void eval_subtract_default(T& t, const T& u, const T& v)
{
if((&t == &v) && is_signed_number<T>::value)
{
eval_subtract(t, u);
t.negate();
}
else if(&t == &u)
{
eval_subtract(t, v);
}
else
{
t = u;
eval_subtract(t, v);
}
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_subtract_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_subtract(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_subtract_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_subtract(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_signed_number<T>::value>::type eval_subtract_default(T& t, const U& u, const T& v)
{
eval_subtract(t, v, u);
t.negate();
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value && is_unsigned_number<T>::value>::type eval_subtract_default(T& t, const U& u, const T& v)
{
T temp;
temp = u;
eval_subtract(t, temp, v);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value && is_unsigned_number<T>::value>::type eval_subtract_default(T& t, const U& u, const T& v)
{
T temp(u);
eval_subtract(t, temp, v);
}
template <class T, class U, class V>
inline void eval_subtract_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
eval_subtract(t, u);
t.negate();
}
else
{
t = u;
eval_subtract(t, v);
}
}
template <class T, class U, class V>
inline void eval_subtract(T& t, const U& u, const V& v)
{
eval_subtract_default(t, u, v);
}
template <class T>
inline void eval_multiply_default(T& t, const T& u, const T& v)
{
if(&t == &v)
{
eval_multiply(t, u);
}
else if(&t == &u)
{
eval_multiply(t, v);
}
else
{
t = u;
eval_multiply(t, v);
}
}
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900)
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_multiply_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_multiply(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_multiply_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_multiply(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value>::type eval_multiply_default(T& t, const U& u, const T& v)
{
eval_multiply(t, v, u);
}
#endif
template <class T, class U, class V>
inline void eval_multiply_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
eval_multiply(t, u);
}
else
{
t = number<T>::canonical_value(u);
eval_multiply(t, v);
}
}
template <class T, class U, class V>
inline void eval_multiply(T& t, const U& u, const V& v)
{
eval_multiply_default(t, u, v);
}
template <class T>
inline void eval_multiply_add(T& t, const T& u, const T& v, const T& x)
{
if((void*)&x == (void*)&t)
{
T z;
z = number<T>::canonical_value(x);
eval_multiply_add(t, u, v, z);
}
else
{
eval_multiply(t, u, v);
eval_add(t, x);
}
}
template <class T, class U>
inline typename boost::disable_if_c<boost::is_same<T, U>::value, T>::type make_T(const U& u)
{
T t;
t = number<T>::canonical_value(u);
return BOOST_MP_MOVE(t);
}
template <class T>
inline const T& make_T(const T& t)
{
return t;
}
template <class T, class U, class V, class X>
inline typename disable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_add(T& t, const U& u, const V& v, const X& x)
{
eval_multiply_add(t, make_T<T>(u), make_T<T>(v), make_T<T>(x));
}
template <class T, class U, class V, class X>
inline typename enable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_add(T& t, const U& u, const V& v, const X& x)
{
eval_multiply_add(t, v, u, x);
}
template <class T, class U, class V, class X>
inline typename disable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_subtract(T& t, const U& u, const V& v, const X& x)
{
if((void*)&x == (void*)&t)
{
T z;
z = x;
eval_multiply_subtract(t, u, v, z);
}
else
{
eval_multiply(t, u, v);
eval_subtract(t, x);
}
}
template <class T, class U, class V, class X>
inline typename enable_if_c<!is_same<T, U>::value && is_same<T, V>::value>::type eval_multiply_subtract(T& t, const U& u, const V& v, const X& x)
{
eval_multiply_subtract(t, v, u, x);
}
template <class T, class U, class V>
void eval_divide(T& t, const U& u, const V& v);
template <class T>
inline void eval_divide_default(T& t, const T& u, const T& v)
{
if(&t == &u)
eval_divide(t, v);
else if(&t == &v)
{
T temp;
eval_divide(temp, u, v);
temp.swap(t);
}
else
{
t = u;
eval_divide(t, v);
}
}
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900)
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_divide_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_divide(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_divide_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_divide(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_divide_default(T& t, const U& u, const T& v)
{
T uu;
uu = u;
eval_divide(t, uu, v);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_divide_default(T& t, const U& u, const T& v)
{
T uu(u);
eval_divide(t, uu, v);
}
#endif
template <class T, class U, class V>
inline void eval_divide_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
T temp;
temp = u;
eval_divide(temp, v);
t = temp;
}
else
{
t = u;
eval_divide(t, v);
}
}
template <class T, class U, class V>
inline void eval_divide(T& t, const U& u, const V& v)
{
eval_divide_default(t, u, v);
}
template <class T, class U, class V>
void eval_modulus(T& t, const U& u, const V& v);
template <class T>
inline void eval_modulus_default(T& t, const T& u, const T& v)
{
if(&t == &u)
eval_modulus(t, v);
else if(&t == &v)
{
T temp;
eval_modulus(temp, u, v);
temp.swap(t);
}
else
{
t = u;
eval_modulus(t, v);
}
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_modulus_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_modulus(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_modulus_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_modulus(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_modulus_default(T& t, const U& u, const T& v)
{
T uu;
uu = u;
eval_modulus(t, uu, v);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_modulus_default(T& t, const U& u, const T& v)
{
T uu(u);
eval_modulus(t, uu, v);
}
template <class T, class U, class V>
inline void eval_modulus_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
T temp(u);
eval_modulus(temp, v);
t = temp;
}
else
{
t = u;
eval_modulus(t, v);
}
}
template <class T, class U, class V>
inline void eval_modulus(T& t, const U& u, const V& v)
{
eval_modulus_default(t, u, v);
}
template <class T, class U, class V>
void eval_bitwise_and(T& t, const U& u, const V& v);
template <class T>
inline void eval_bitwise_and_default(T& t, const T& u, const T& v)
{
if(&t == &v)
{
eval_bitwise_and(t, u);
}
else if(&t == &u)
{
eval_bitwise_and(t, v);
}
else
{
t = u;
eval_bitwise_and(t, v);
}
}
template <class T, class U>
inline typename disable_if_c<is_convertible<U, T>::value>::type eval_bitwise_and_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_bitwise_and(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, T>::value>::type eval_bitwise_and_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_bitwise_and(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value>::type eval_bitwise_and_default(T& t, const U& u, const T& v)
{
eval_bitwise_and(t, v, u);
}
template <class T, class U, class V>
inline typename disable_if_c<is_same<T, U>::value || is_same<T, V>::value>::type eval_bitwise_and_default(T& t, const U& u, const V& v)
{
t = u;
eval_bitwise_and(t, v);
}
template <class T, class U, class V>
inline void eval_bitwise_and(T& t, const U& u, const V& v)
{
eval_bitwise_and_default(t, u, v);
}
template <class T, class U, class V>
void eval_bitwise_or(T& t, const U& u, const V& v);
template <class T>
inline void eval_bitwise_or_default(T& t, const T& u, const T& v)
{
if(&t == &v)
{
eval_bitwise_or(t, u);
}
else if(&t == &u)
{
eval_bitwise_or(t, v);
}
else
{
t = u;
eval_bitwise_or(t, v);
}
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_bitwise_or_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_bitwise_or(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_bitwise_or_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_bitwise_or(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value>::type eval_bitwise_or_default(T& t, const U& u, const T& v)
{
eval_bitwise_or(t, v, u);
}
template <class T, class U, class V>
inline void eval_bitwise_or_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
eval_bitwise_or(t, u);
}
else
{
t = u;
eval_bitwise_or(t, v);
}
}
template <class T, class U, class V>
inline void eval_bitwise_or(T& t, const U& u, const V& v)
{
eval_bitwise_or_default(t, u, v);
}
template <class T, class U, class V>
void eval_bitwise_xor(T& t, const U& u, const V& v);
template <class T>
inline void eval_bitwise_xor_default(T& t, const T& u, const T& v)
{
if(&t == &v)
{
eval_bitwise_xor(t, u);
}
else if(&t == &u)
{
eval_bitwise_xor(t, v);
}
else
{
t = u;
eval_bitwise_xor(t, v);
}
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && !is_convertible<U, T>::value>::type eval_bitwise_xor_default(T& t, const T& u, const U& v)
{
T vv;
vv = v;
eval_bitwise_xor(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value && is_convertible<U, T>::value>::type eval_bitwise_xor_default(T& t, const T& u, const U& v)
{
T vv(v);
eval_bitwise_xor(t, u, vv);
}
template <class T, class U>
inline typename enable_if_c<is_convertible<U, number<T, et_on> >::value>::type eval_bitwise_xor_default(T& t, const U& u, const T& v)
{
eval_bitwise_xor(t, v, u);
}
template <class T, class U, class V>
inline void eval_bitwise_xor_default(T& t, const U& u, const V& v)
{
if(is_same<T, V>::value && ((void*)&t == (void*)&v))
{
eval_bitwise_xor(t, u);
}
else
{
t = u;
eval_bitwise_xor(t, v);
}
}
template <class T, class U, class V>
inline void eval_bitwise_xor(T& t, const U& u, const V& v)
{
eval_bitwise_xor_default(t, u, v);
}
template <class T>
inline void eval_increment(T& val)
{
typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
eval_add(val, static_cast<ui_type>(1u));
}
template <class T>
inline void eval_decrement(T& val)
{
typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
eval_subtract(val, static_cast<ui_type>(1u));
}
template <class T, class V>
inline void eval_left_shift(T& result, const T& arg, const V val)
{
result = arg;
eval_left_shift(result, val);
}
template <class T, class V>
inline void eval_right_shift(T& result, const T& arg, const V val)
{
result = arg;
eval_right_shift(result, val);
}
template <class T>
inline bool eval_is_zero(const T& val)
{
typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
return val.compare(static_cast<ui_type>(0)) == 0;
}
template <class T>
inline int eval_get_sign(const T& val)
{
typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
return val.compare(static_cast<ui_type>(0));
}
template <class T, class V>
inline void assign_components_imp(T& result, const V& v1, const V& v2, const mpl::int_<number_kind_rational>&)
{
result = v1;
T t;
t = v2;
eval_divide(result, t);
}
template <class T, class V>
inline void assign_components(T& result, const V& v1, const V& v2)
{
return assign_components_imp(result, v1, v2, typename number_category<T>::type());
}
template <class R, int b>
struct has_enough_bits
{
template <class T>
struct type : public mpl::and_<mpl::not_<is_same<R, T> >, mpl::bool_<std::numeric_limits<T>::digits >= b> >{};
};
template <class R>
struct terminal
{
terminal(const R& v) : value(v){}
terminal(){}
terminal& operator = (R val) { value = val; return *this; }
R value;
operator R()const { return value; }
};
template<class R, class B>
struct calculate_next_larger_type
{
// Find which list we're looking through:
typedef typename mpl::if_<
is_signed<R>,
typename B::signed_types,
typename mpl::if_<
is_unsigned<R>,
typename B::unsigned_types,
typename B::float_types
>::type
>::type list_type;
// A predicate to find a type with enough bits:
typedef typename has_enough_bits<R, std::numeric_limits<R>::digits>::template type<mpl::_> pred_type;
// See if the last type is in the list, if so we have to start after this:
typedef typename mpl::find_if<
list_type,
is_same<R, mpl::_>
>::type start_last;
// Where we're starting from, either the start of the sequence or the last type found:
typedef typename mpl::if_<is_same<start_last, typename mpl::end<list_type>::type>, typename mpl::begin<list_type>::type, start_last>::type start_seq;
// The range we're searching:
typedef mpl::iterator_range<start_seq, typename mpl::end<list_type>::type> range;
// Find the next type:
typedef typename mpl::find_if<
range,
pred_type
>::type iter_type;
// Either the next type, or a "terminal" to indicate we've run out of types to search:
typedef typename mpl::eval_if<
is_same<typename mpl::end<list_type>::type, iter_type>,
mpl::identity<terminal<R> >,
mpl::deref<iter_type>
>::type type;
};
template <class R, class T>
inline bool check_in_range(const T& t)
{
// Can t fit in an R?
if(std::numeric_limits<R>::is_specialized && std::numeric_limits<R>::is_bounded && (t > (std::numeric_limits<R>::max)()))
return true;
return false;
}
template <class R, class T>
inline bool check_in_range(const terminal<T>&)
{
return false;
}
template <class R, class B>
inline void eval_convert_to(R* result, const B& backend)
{
typedef typename calculate_next_larger_type<R, B>::type next_type;
next_type n;
eval_convert_to(&n, backend);
if(check_in_range<R>(n))
{
*result = (std::numeric_limits<R>::max)();
}
else
*result = static_cast<R>(n);
}
template <class R, class B>
inline void eval_convert_to(terminal<R>* result, const B& backend)
{
//
// We ran out of types to try for the conversion, try
// a lexical_cast and hope for the best:
//
result->value = boost::lexical_cast<R>(backend.str(0, std::ios_base::fmtflags(0)));
}
template <class B1, class B2, expression_template_option et>
inline void eval_convert_to(terminal<number<B1, et> >* result, const B2& backend)
{
//
// We ran out of types to try for the conversion, try
// a generic conversion and hope for the best:
//
boost::multiprecision::detail::generic_interconvert(result->value.backend(), backend, number_category<B1>(), number_category<B2>());
}
template <class B>
inline void eval_convert_to(std::string* result, const B& backend)
{
*result = backend.str(0, std::ios_base::fmtflags(0));
}
//
// Functions:
//
template <class T>
void eval_abs(T& result, const T& arg)
{
typedef typename T::signed_types type_list;
typedef typename mpl::front<type_list>::type front;
result = arg;
if(arg.compare(front(0)) < 0)
result.negate();
}
template <class T>
void eval_fabs(T& result, const T& arg)
{
BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The fabs function is only valid for floating point types.");
typedef typename T::signed_types type_list;
typedef typename mpl::front<type_list>::type front;
result = arg;
if(arg.compare(front(0)) < 0)
result.negate();
}
template <class Backend>
inline int eval_fpclassify(const Backend& arg)
{
BOOST_STATIC_ASSERT_MSG(number_category<Backend>::value == number_kind_floating_point, "The fpclassify function is only valid for floating point types.");
return eval_is_zero(arg) ? FP_ZERO : FP_NORMAL;
}
template <class T>
inline void eval_fmod(T& result, const T& a, const T& b)
{
BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The fmod function is only valid for floating point types.");
if((&result == &a) || (&result == &b))
{
T temp;
eval_fmod(temp, a, b);
result = temp;
return;
}
switch(eval_fpclassify(a))
{
case FP_ZERO:
result = a;
return;
case FP_INFINITE:
case FP_NAN:
result = std::numeric_limits<number<T> >::quiet_NaN().backend();
errno = EDOM;
return;
}
switch(eval_fpclassify(b))
{
case FP_ZERO:
case FP_NAN:
result = std::numeric_limits<number<T> >::quiet_NaN().backend();
errno = EDOM;
return;
}
T n;
eval_divide(result, a, b);
if(eval_get_sign(result) < 0)
eval_ceil(n, result);
else
eval_floor(n, result);
eval_multiply(n, b);
eval_subtract(result, a, n);
}
template<class T, class A>
inline typename enable_if<is_arithmetic<A>, void>::type eval_fmod(T& result, const T& x, const A& a)
{
typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
cast_type c;
c = a;
eval_fmod(result, x, c);
}
template<class T, class A>
inline typename enable_if<is_arithmetic<A>, void>::type eval_fmod(T& result, const A& x, const T& a)
{
typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
cast_type c;
c = x;
eval_fmod(result, c, a);
}
template <class T>
void eval_round(T& result, const T& a);
template <class T>
inline void eval_remquo(T& result, const T& a, const T& b, int* pi)
{
BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The remquo function is only valid for floating point types.");
if((&result == &a) || (&result == &b))
{
T temp;
eval_remquo(temp, a, b, pi);
result = temp;
return;
}
T n;
eval_divide(result, a, b);
eval_round(n, result);
eval_convert_to(pi, n);
eval_multiply(n, b);
eval_subtract(result, a, n);
}
template<class T, class A>
inline typename enable_if<is_arithmetic<A>, void>::type eval_remquo(T& result, const T& x, const A& a, int* pi)
{
typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
cast_type c;
c = a;
eval_remquo(result, x, c, pi);
}
template<class T, class A>
inline typename enable_if<is_arithmetic<A>, void>::type eval_remquo(T& result, const A& x, const T& a, int* pi)
{
typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
cast_type c;
c = x;
eval_remquo(result, c, a, pi);
}
template <class T, class U, class V>
inline void eval_remainder(T& result, const U& a, const V& b)
{
int i;
eval_remquo(result, a, b, &i);
}
template <class B>
bool eval_gt(const B& a, const B& b);
template <class T, class U>
bool eval_gt(const T& a, const U& b);
template <class B>
bool eval_lt(const B& a, const B& b);
template <class T, class U>
bool eval_lt(const T& a, const U& b);
template<class T>
inline void eval_fdim(T& result, const T& a, const T& b)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
static const ui_type zero = 0u;
switch(eval_fpclassify(b))
{
case FP_NAN:
case FP_INFINITE:
result = zero;
return;
}
switch(eval_fpclassify(a))
{
case FP_NAN:
result = zero;
return;
case FP_INFINITE:
result = a;
return;
}
if(eval_gt(a, b))
{
eval_subtract(result, a, b);
}
else
result = zero;
}
template<class T, class A>
inline typename boost::enable_if_c<boost::is_arithmetic<A>::value>::type eval_fdim(T& result, const T& a, const A& b)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
typedef typename boost::multiprecision::detail::canonical<A, T>::type arithmetic_type;
static const ui_type zero = 0u;
arithmetic_type canonical_b = b;
switch((::boost::math::fpclassify)(b))
{
case FP_NAN:
case FP_INFINITE:
result = zero;
return;
}
switch(eval_fpclassify(a))
{
case FP_NAN:
result = zero;
return;
case FP_INFINITE:
result = a;
return;
}
if(eval_gt(a, canonical_b))
{
eval_subtract(result, a, canonical_b);
}
else
result = zero;
}
template<class T, class A>
inline typename boost::enable_if_c<boost::is_arithmetic<A>::value>::type eval_fdim(T& result, const A& a, const T& b)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
typedef typename boost::multiprecision::detail::canonical<A, T>::type arithmetic_type;
static const ui_type zero = 0u;
arithmetic_type canonical_a = a;
switch(eval_fpclassify(b))
{
case FP_NAN:
case FP_INFINITE:
result = zero;
return;
}
switch((::boost::math::fpclassify)(a))
{
case FP_NAN:
result = zero;
return;
case FP_INFINITE:
result = std::numeric_limits<number<T> >::infinity().backend();
return;
}
if(eval_gt(canonical_a, b))
{
eval_subtract(result, canonical_a, b);
}
else
result = zero;
}
template <class T>
inline void eval_trunc(T& result, const T& a)
{
BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The trunc function is only valid for floating point types.");
switch(eval_fpclassify(a))
{
case FP_NAN:
errno = EDOM;
// fallthrough...
case FP_ZERO:
case FP_INFINITE:
result = a;
return;
}
if(eval_get_sign(a) < 0)
eval_ceil(result, a);
else
eval_floor(result, a);
}
template <class T>
inline void eval_modf(T& result, T const& arg, T* pipart)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
int c = eval_fpclassify(arg);
if(c == (int)FP_NAN)
{
if(pipart)
*pipart = arg;
result = arg;
return;
}
else if(c == (int)FP_INFINITE)
{
if(pipart)
*pipart = arg;
result = ui_type(0u);
return;
}
if(pipart)
{
eval_trunc(*pipart, arg);
eval_subtract(result, arg, *pipart);
}
else
{
T ipart;
eval_trunc(ipart, arg);
eval_subtract(result, arg, ipart);
}
}
template <class T>
inline void eval_round(T& result, const T& a)
{
BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The round function is only valid for floating point types.");
typedef typename boost::multiprecision::detail::canonical<float, T>::type fp_type;
int c = eval_fpclassify(a);
if(c == (int)FP_NAN)
{
result = a;
errno = EDOM;
return;
}
if((c == FP_ZERO) || (c == (int)FP_INFINITE))
{
result = a;
}
else if(eval_get_sign(a) < 0)
{
eval_subtract(result, a, fp_type(0.5f));
eval_ceil(result, result);
}
else
{
eval_add(result, a, fp_type(0.5f));
eval_floor(result, result);
}
}
template <class B>
void eval_lcm(B& result, const B& a, const B& b);
template <class B>
void eval_gcd(B& result, const B& a, const B& b);
template <class T, class Arithmetic>
inline typename enable_if<is_integral<Arithmetic> >::type eval_gcd(T& result, const T& a, const Arithmetic& b)
{
typedef typename boost::multiprecision::detail::canonical<Arithmetic, T>::type si_type;
using default_ops::eval_gcd;
T t;
t = static_cast<si_type>(b);
eval_gcd(result, a, t);
}
template <class T, class Arithmetic>
inline typename enable_if<is_integral<Arithmetic> >::type eval_gcd(T& result, const Arithmetic& a, const T& b)
{
eval_gcd(result, b, a);
}
template <class T, class Arithmetic>
inline typename enable_if<is_integral<Arithmetic> >::type eval_lcm(T& result, const T& a, const Arithmetic& b)
{
typedef typename boost::multiprecision::detail::canonical<Arithmetic, T>::type si_type;
using default_ops::eval_lcm;
T t;
t = static_cast<si_type>(b);
eval_lcm(result, a, t);
}
template <class T, class Arithmetic>
inline typename enable_if<is_integral<Arithmetic> >::type eval_lcm(T& result, const Arithmetic& a, const T& b)
{
eval_lcm(result, b, a);
}
template <class T>
inline unsigned eval_lsb(const T& val)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
int c = eval_get_sign(val);
if(c == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
if(c < 0)
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
unsigned result = 0;
T mask, t;
mask = ui_type(1);
do
{
eval_bitwise_and(t, mask, val);
++result;
eval_left_shift(mask, 1);
}
while(eval_is_zero(t));
return --result;
}
template <class T>
inline int eval_msb(const T& val)
{
int c = eval_get_sign(val);
if(c == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
if(c < 0)
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
//
// This implementation is really really rubbish - it does
// a linear scan for the most-significant-bit. We should really
// do a binary search, but as none of our backends actually needs
// this implementation, we'll leave it for now. In fact for most
// backends it's likely that there will always be a more efficient
// native implementation possible.
//
unsigned result = 0;
T t(val);
while(!eval_is_zero(t))
{
eval_right_shift(t, 1);
++result;
}
return --result;
}
template <class T>
inline bool eval_bit_test(const T& val, unsigned index)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
T mask, t;
mask = ui_type(1);
eval_left_shift(mask, index);
eval_bitwise_and(t, mask, val);
return !eval_is_zero(t);
}
template <class T>
inline void eval_bit_set(T& val, unsigned index)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
T mask;
mask = ui_type(1);
eval_left_shift(mask, index);
eval_bitwise_or(val, mask);
}
template <class T>
inline void eval_bit_flip(T& val, unsigned index)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
T mask;
mask = ui_type(1);
eval_left_shift(mask, index);
eval_bitwise_xor(val, mask);
}
template <class T>
inline void eval_bit_unset(T& val, unsigned index)
{
typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
T mask, t;
mask = ui_type(1);
eval_left_shift(mask, index);
eval_bitwise_and(t, mask, val);
if(!eval_is_zero(t))
eval_bitwise_xor(val, mask);
}
template <class B>
void eval_integer_sqrt(B& s, B& r, const B& x)
{
//
// This is slow bit-by-bit integer square root, see for example
// http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_.28base_2.29
// There are better methods such as http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf
// and http://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf which should be implemented
// at some point.
//
typedef typename boost::multiprecision::detail::canonical<unsigned char, B>::type ui_type;
s = ui_type(0u);
if(eval_get_sign(x) == 0)
{
r = ui_type(0u);
return;
}
int g = eval_msb(x);
if(g <= 1)
{
s = ui_type(1);
eval_subtract(r, x, s);
return;
}
B t;
r = x;
g /= 2;
int org_g = g;
eval_bit_set(s, g);
eval_bit_set(t, 2 * g);
eval_subtract(r, x, t);
--g;
if(eval_get_sign(r) == 0)
return;
int msbr = eval_msb(r);
do
{
if(msbr >= org_g + g + 1)
{
t = s;
eval_left_shift(t, g + 1);
eval_bit_set(t, 2 * g);
if(t.compare(r) <= 0)
{
BOOST_ASSERT(g >= 0);
eval_bit_set(s, g);
eval_subtract(r, t);
if(eval_get_sign(r) == 0)
return;
msbr = eval_msb(r);
}
}
--g;
}
while(g >= 0);
}
//
// These have to implemented by the backend, declared here so that our macro generated code compiles OK.
//
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_floor();
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_ceil();
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_trunc();
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_sqrt();
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_ldexp();
template <class T>
typename enable_if_c<sizeof(T) == 0>::type eval_frexp();
//
// eval_logb and eval_scalbn simply assume base 2 and forward to
// eval_ldexp and eval_frexp:
//
template <class B>
inline typename B::exponent_type eval_ilogb(const B& val)
{
BOOST_STATIC_ASSERT_MSG(!std::numeric_limits<number<B> >::is_specialized || (std::numeric_limits<number<B> >::radix == 2), "The default implementation of ilogb requires a base 2 number type");
typename B::exponent_type e;
switch(eval_fpclassify(val))
{
case FP_NAN:
#ifdef FP_ILOGBNAN
return FP_ILOGBNAN > 0 ? (std::numeric_limits<typename B::exponent_type>::max)() : (std::numeric_limits<typename B::exponent_type>::min)();
#else
return (std::numeric_limits<typename B::exponent_type>::max)();
#endif
case FP_INFINITE:
return (std::numeric_limits<typename B::exponent_type>::max)();
case FP_ZERO:
return (std::numeric_limits<typename B::exponent_type>::min)();
}
B result;
eval_frexp(result, val, &e);
return e - 1;
}
template <class T>
int eval_signbit(const T& val);
template <class B>
inline void eval_logb(B& result, const B& val)
{
switch(eval_fpclassify(val))
{
case FP_NAN:
result = val;
errno = EDOM;
return;
case FP_ZERO:
result = std::numeric_limits<number<B> >::infinity().backend();
result.negate();
errno = ERANGE;
return;
case FP_INFINITE:
result = val;
if(eval_signbit(val))
result.negate();
return;
}
typedef typename boost::mpl::if_c<boost::is_same<boost::intmax_t, long>::value, boost::long_long_type, boost::intmax_t>::type max_t;
result = static_cast<max_t>(eval_ilogb(val));
}
template <class B, class A>
inline void eval_scalbn(B& result, const B& val, A e)
{
BOOST_STATIC_ASSERT_MSG(!std::numeric_limits<number<B> >::is_specialized || (std::numeric_limits<number<B> >::radix == 2), "The default implementation of scalbn requires a base 2 number type");
eval_ldexp(result, val, static_cast<typename B::exponent_type>(e));
}
template <class B, class A>
inline void eval_scalbln(B& result, const B& val, A e)
{
eval_scalbn(result, val, e);
}
template <class T>
inline bool is_arg_nan(const T& val, mpl::true_ const&, const mpl::false_&)
{
return eval_fpclassify(val) == FP_NAN;
}
template <class T>
inline bool is_arg_nan(const T& val, mpl::false_ const&, const mpl::true_&)
{
return (boost::math::isnan)(val);
}
template <class T>
inline bool is_arg_nan(const T&, mpl::false_ const&, const mpl::false_&)
{
return false;
}
template <class T>
inline bool is_arg_nan(const T& val)
{
return is_arg_nan(val, mpl::bool_<boost::multiprecision::detail::is_backend<T>::value>(), is_floating_point<T>());
}
template <class T, class U, class V>
inline void eval_fmax(T& result, const U& a, const V& b)
{
if(is_arg_nan(a))
result = number<T>::canonical_value(b);
else if(is_arg_nan(b))
result = number<T>::canonical_value(a);
else if(eval_lt(number<T>::canonical_value(a), number<T>::canonical_value(b)))
result = number<T>::canonical_value(b);
else
result = number<T>::canonical_value(a);
}
template <class T, class U, class V>
inline void eval_fmin(T& result, const U& a, const V& b)
{
if(is_arg_nan(a))
result = number<T>::canonical_value(b);
else if(is_arg_nan(b))
result = number<T>::canonical_value(a);
else if(eval_lt(number<T>::canonical_value(a), number<T>::canonical_value(b)))
result = number<T>::canonical_value(a);
else
result = number<T>::canonical_value(b);
}
template <class R, class T, class U>
inline void eval_hypot(R& result, const T& a, const U& b)
{
//
// Normalize x and y, so that both are positive and x >= y:
//
R x, y;
x = number<R>::canonical_value(a);
y = number<R>::canonical_value(b);
if(eval_get_sign(x) < 0)
x.negate();
if(eval_get_sign(y) < 0)
y.negate();
// Special case, see C99 Annex F.
// The order of the if's is important: do not change!
int c1 = eval_fpclassify(x);
int c2 = eval_fpclassify(y);
if(c1 == FP_ZERO)
{
result = y;
return;
}
if(c2 == FP_ZERO)
{
result = x;
return;
}
if(c1 == FP_INFINITE)
{
result = x;
return;
}
if((c2 == FP_INFINITE) || (c2 == FP_NAN))
{
result = y;
return;
}
if(c1 == FP_NAN)
{
result = x;
return;
}
if(eval_gt(y, x))
x.swap(y);
eval_multiply(result, x, std::numeric_limits<number<R> >::epsilon().backend());
if(eval_gt(result, y))
{
result = x;
return;
}
R rat;
eval_divide(rat, y, x);
eval_multiply(result, rat, rat);
eval_increment(result);
eval_sqrt(rat, result);
eval_multiply(result, rat, x);
}
template <class R, class T>
inline void eval_nearbyint(R& result, const T& a)
{
eval_round(result, a);
}
template <class R, class T>
inline void eval_rint(R& result, const T& a)
{
eval_nearbyint(result, a);
}
template <class T>
inline int eval_signbit(const T& val)
{
return eval_get_sign(val) < 0 ? 1 : 0;
}
//
// These functions are implemented in separate files, but expanded inline here,
// DO NOT CHANGE THE ORDER OF THESE INCLUDES:
//
#include <boost/multiprecision/detail/functions/constants.hpp>
#include <boost/multiprecision/detail/functions/pow.hpp>
#include <boost/multiprecision/detail/functions/trig.hpp>
}
//
// Default versions of floating point classification routines:
//
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline int fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
using multiprecision::default_ops::eval_fpclassify;
return eval_fpclassify(arg.backend());
}
template <class tag, class A1, class A2, class A3, class A4>
inline int fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline bool isfinite BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
int v = fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(arg);
return (v != (int)FP_INFINITE) && (v != (int)FP_NAN);
}
template <class tag, class A1, class A2, class A3, class A4>
inline bool isfinite BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return isfinite BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline bool isnan BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(arg) == (int)FP_NAN;
}
template <class tag, class A1, class A2, class A3, class A4>
inline bool isnan BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return isnan BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline bool isinf BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(arg) == (int)FP_INFINITE;
}
template <class tag, class A1, class A2, class A3, class A4>
inline bool isinf BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return isinf BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline bool isnormal BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return fpclassify BOOST_PREVENT_MACRO_SUBSTITUTION(arg) == (int)FP_NORMAL;
}
template <class tag, class A1, class A2, class A3, class A4>
inline bool isnormal BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return isnormal BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
// Default versions of sign manipulation functions, if individual backends can do better than this
// (for example with signed zero), then they should overload these functions further:
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline int sign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return arg.sign();
}
template <class tag, class A1, class A2, class A3, class A4>
inline int sign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return sign BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline int signbit BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
using default_ops::eval_signbit;
return eval_signbit(arg.backend());
}
template <class tag, class A1, class A2, class A3, class A4>
inline int signbit BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return signbit BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> changesign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return -arg;
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type changesign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return changesign BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> copysign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return (boost::multiprecision::signbit)(a) != (boost::multiprecision::signbit)(b) ? (boost::multiprecision::changesign)(a) : a;
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates, class tag, class A1, class A2, class A3, class A4>
inline multiprecision::number<Backend, ExpressionTemplates> copysign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::detail::expression<tag, A1, A2, A3, A4>& b)
{
return copysign BOOST_PREVENT_MACRO_SUBSTITUTION(a, multiprecision::number<Backend, ExpressionTemplates>(b));
}
template <class tag, class A1, class A2, class A3, class A4, class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> copysign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return copysign BOOST_PREVENT_MACRO_SUBSTITUTION(multiprecision::number<Backend, ExpressionTemplates>(a), b);
}
template <class tag, class A1, class A2, class A3, class A4, class tagb, class A1b, class A2b, class A3b, class A4b>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type copysign BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::detail::expression<tagb, A1b, A2b, A3b, A4b>& b)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return copysign BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(a), value_type(b));
}
} // namespace multiprecision
namespace math {
//
// Import Math functions here, so they can be found by Boost.Math:
//
using boost::multiprecision::signbit;
using boost::multiprecision::sign;
using boost::multiprecision::copysign;
using boost::multiprecision::changesign;
using boost::multiprecision::fpclassify;
using boost::multiprecision::isinf;
using boost::multiprecision::isnan;
using boost::multiprecision::isnormal;
using boost::multiprecision::isfinite;
}
namespace multiprecision{
typedef ::boost::math::policies::policy<
::boost::math::policies::domain_error< ::boost::math::policies::errno_on_error>,
::boost::math::policies::pole_error< ::boost::math::policies::errno_on_error>,
::boost::math::policies::overflow_error< ::boost::math::policies::errno_on_error>,
::boost::math::policies::evaluation_error< ::boost::math::policies::errno_on_error>,
::boost::math::policies::rounding_error< ::boost::math::policies::errno_on_error>
> c99_error_policy;
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> asinh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::asinh(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type asinh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return asinh(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> acosh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::acosh(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type acosh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return acosh(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> atanh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::atanh(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type atanh BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return atanh(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> cbrt BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::cbrt(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type cbrt BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return cbrt(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> erf BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::erf(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type erf BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return erf(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> erfc BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::erfc(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type erfc BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return erfc(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> expm1 BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::expm1(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type expm1 BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return expm1(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> lgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
multiprecision::number<Backend, ExpressionTemplates> result;
result = boost::math::lgamma(arg, c99_error_policy());
if((boost::multiprecision::isnan)(result) && !(boost::multiprecision::isnan)(arg))
{
result = std::numeric_limits<multiprecision::number<Backend, ExpressionTemplates> >::infinity();
errno = ERANGE;
}
return result;
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type lgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return lgamma(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> tgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
if((arg == 0) && std::numeric_limits<multiprecision::number<Backend, ExpressionTemplates> >::has_infinity)
{
errno = ERANGE;
return 1 / arg;
}
return boost::math::tgamma(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type tgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return tgamma(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline long lrint BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return lround(arg);
}
template <class tag, class A1, class A2, class A3, class A4>
inline long lrint BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
return lround(arg);
}
#ifndef BOOST_NO_LONG_LONG
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline boost::long_long_type llrint BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return llround(arg);
}
template <class tag, class A1, class A2, class A3, class A4>
inline boost::long_long_type llrint BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
return llround(arg);
}
#endif
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> log1p BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& arg)
{
return boost::math::log1p(arg, c99_error_policy());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type log1p BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& arg)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return log1p(value_type(arg));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return boost::math::nextafter(a, b, c99_error_policy());
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates, class tag, class A1, class A2, class A3, class A4>
inline multiprecision::number<Backend, ExpressionTemplates> nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::detail::expression<tag, A1, A2, A3, A4>& b)
{
return nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(a, multiprecision::number<Backend, ExpressionTemplates>(b));
}
template <class tag, class A1, class A2, class A3, class A4, class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(multiprecision::number<Backend, ExpressionTemplates>(a), b);
}
template <class tag, class A1, class A2, class A3, class A4, class tagb, class A1b, class A2b, class A3b, class A4b>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::detail::expression<tagb, A1b, A2b, A3b, A4b>& b)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return nextafter BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(a), value_type(b));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return boost::math::nextafter(a, b, c99_error_policy());
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates, class tag, class A1, class A2, class A3, class A4>
inline multiprecision::number<Backend, ExpressionTemplates> nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::number<Backend, ExpressionTemplates>& a, const multiprecision::detail::expression<tag, A1, A2, A3, A4>& b)
{
return nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(a, multiprecision::number<Backend, ExpressionTemplates>(b));
}
template <class tag, class A1, class A2, class A3, class A4, class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::number<Backend, ExpressionTemplates>& b)
{
return nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(multiprecision::number<Backend, ExpressionTemplates>(a), b);
}
template <class tag, class A1, class A2, class A3, class A4, class tagb, class A1b, class A2b, class A3b, class A4b>
inline typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(const multiprecision::detail::expression<tag, A1, A2, A3, A4>& a, const multiprecision::detail::expression<tagb, A1b, A2b, A3b, A4b>& b)
{
typedef typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type value_type;
return nexttoward BOOST_PREVENT_MACRO_SUBSTITUTION(value_type(a), value_type(b));
}
template <class B1, class B2, class B3, expression_template_option ET1, expression_template_option ET2, expression_template_option ET3>
inline number<B1, ET1>& add(number<B1, ET1>& result, const number<B2, ET2>& a, const number<B3, ET3>& b)
{
BOOST_STATIC_ASSERT_MSG((is_convertible<B2, B1>::value), "No conversion to the target of a mixed precision addition exists");
BOOST_STATIC_ASSERT_MSG((is_convertible<B3, B1>::value), "No conversion to the target of a mixed precision addition exists");
using default_ops::eval_add;
eval_add(result.backend(), a.backend(), b.backend());
return result;
}
template <class B1, class B2, class B3, expression_template_option ET1, expression_template_option ET2, expression_template_option ET3>
inline number<B1, ET1>& subtract(number<B1, ET1>& result, const number<B2, ET2>& a, const number<B3, ET3>& b)
{
BOOST_STATIC_ASSERT_MSG((is_convertible<B2, B1>::value), "No conversion to the target of a mixed precision addition exists");
BOOST_STATIC_ASSERT_MSG((is_convertible<B3, B1>::value), "No conversion to the target of a mixed precision addition exists");
using default_ops::eval_subtract;
eval_subtract(result.backend(), a.backend(), b.backend());
return result;
}
template <class B1, class B2, class B3, expression_template_option ET1, expression_template_option ET2, expression_template_option ET3>
inline number<B1, ET1>& multiply(number<B1, ET1>& result, const number<B2, ET2>& a, const number<B3, ET3>& b)
{
BOOST_STATIC_ASSERT_MSG((is_convertible<B2, B1>::value), "No conversion to the target of a mixed precision addition exists");
BOOST_STATIC_ASSERT_MSG((is_convertible<B3, B1>::value), "No conversion to the target of a mixed precision addition exists");
using default_ops::eval_multiply;
eval_multiply(result.backend(), a.backend(), b.backend());
return result;
}
template <class B, expression_template_option ET, class I>
inline typename enable_if_c<is_integral<I>::value, number<B, ET>&>::type
add(number<B, ET>& result, const I& a, const I& b)
{
using default_ops::eval_add;
typedef typename detail::canonical<I, B>::type canonical_type;
eval_add(result.backend(), static_cast<canonical_type>(a), static_cast<canonical_type>(b));
return result;
}
template <class B, expression_template_option ET, class I>
inline typename enable_if_c<is_integral<I>::value, number<B, ET>&>::type
subtract(number<B, ET>& result, const I& a, const I& b)
{
using default_ops::eval_subtract;
typedef typename detail::canonical<I, B>::type canonical_type;
eval_subtract(result.backend(), static_cast<canonical_type>(a), static_cast<canonical_type>(b));
return result;
}
template <class B, expression_template_option ET, class I>
inline typename enable_if_c<is_integral<I>::value, number<B, ET>&>::type
multiply(number<B, ET>& result, const I& a, const I& b)
{
using default_ops::eval_multiply;
typedef typename detail::canonical<I, B>::type canonical_type;
eval_multiply(result.backend(), static_cast<canonical_type>(a), static_cast<canonical_type>(b));
return result;
}
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline typename detail::expression<tag, A1, A2, A3, A4>::result_type trunc(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(trunc(number_type(v), pol));
}
template <class Backend, expression_template_option ExpressionTemplates, class Policy>
inline number<Backend, ExpressionTemplates> trunc(const number<Backend, ExpressionTemplates>& v, const Policy&)
{
using default_ops::eval_trunc;
number<Backend, ExpressionTemplates> result;
eval_trunc(result.backend(), v.backend());
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline int itrunc(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = trunc(v, pol);
if((r > (std::numeric_limits<int>::max)()) || r < (std::numeric_limits<int>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::itrunc<%1%>(%1%)", 0, number_type(v), 0, pol);
return r.template convert_to<int>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline int itrunc(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return itrunc(v, boost::math::policies::policy<>());
}
template <class Backend, expression_template_option ExpressionTemplates, class Policy>
inline int itrunc(const number<Backend, ExpressionTemplates>& v, const Policy& pol)
{
number<Backend, ExpressionTemplates> r = trunc(v, pol);
if((r > (std::numeric_limits<int>::max)()) || r < (std::numeric_limits<int>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::itrunc<%1%>(%1%)", 0, v, 0, pol);
return r.template convert_to<int>();
}
template <class Backend, expression_template_option ExpressionTemplates>
inline int itrunc(const number<Backend, ExpressionTemplates>& v)
{
return itrunc(v, boost::math::policies::policy<>());
}
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline long ltrunc(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = trunc(v, pol);
if((r > (std::numeric_limits<long>::max)()) || r < (std::numeric_limits<long>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::ltrunc<%1%>(%1%)", 0, number_type(v), 0L, pol);
return r.template convert_to<long>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline long ltrunc(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return ltrunc(v, boost::math::policies::policy<>());
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline long ltrunc(const number<T, ExpressionTemplates>& v, const Policy& pol)
{
number<T, ExpressionTemplates> r = trunc(v, pol);
if((r > (std::numeric_limits<long>::max)()) || r < (std::numeric_limits<long>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::ltrunc<%1%>(%1%)", 0, v, 0L, pol);
return r.template convert_to<long>();
}
template <class T, expression_template_option ExpressionTemplates>
inline long ltrunc(const number<T, ExpressionTemplates>& v)
{
return ltrunc(v, boost::math::policies::policy<>());
}
#ifndef BOOST_NO_LONG_LONG
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline boost::long_long_type lltrunc(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = trunc(v, pol);
if((r > (std::numeric_limits<boost::long_long_type>::max)()) || r < (std::numeric_limits<boost::long_long_type>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::lltrunc<%1%>(%1%)", 0, number_type(v), 0LL, pol);
return r.template convert_to<boost::long_long_type>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline boost::long_long_type lltrunc(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return lltrunc(v, boost::math::policies::policy<>());
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline boost::long_long_type lltrunc(const number<T, ExpressionTemplates>& v, const Policy& pol)
{
number<T, ExpressionTemplates> r = trunc(v, pol);
if((r > (std::numeric_limits<boost::long_long_type>::max)()) || r < (std::numeric_limits<boost::long_long_type>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::lltrunc<%1%>(%1%)", 0, v, 0LL, pol);
return r.template convert_to<boost::long_long_type>();
}
template <class T, expression_template_option ExpressionTemplates>
inline boost::long_long_type lltrunc(const number<T, ExpressionTemplates>& v)
{
return lltrunc(v, boost::math::policies::policy<>());
}
#endif
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline typename detail::expression<tag, A1, A2, A3, A4>::result_type round(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(round(static_cast<number_type>(v), pol));
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline number<T, ExpressionTemplates> round(const number<T, ExpressionTemplates>& v, const Policy&)
{
using default_ops::eval_round;
number<T, ExpressionTemplates> result;
eval_round(result.backend(), v.backend());
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline int iround(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = round(v, pol);
if((r > (std::numeric_limits<int>::max)()) || r < (std::numeric_limits<int>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::iround<%1%>(%1%)", 0, number_type(v), 0, pol);
return r.template convert_to<int>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline int iround(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return iround(v, boost::math::policies::policy<>());
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline int iround(const number<T, ExpressionTemplates>& v, const Policy& pol)
{
number<T, ExpressionTemplates> r = round(v, pol);
if((r > (std::numeric_limits<int>::max)()) || r < (std::numeric_limits<int>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::iround<%1%>(%1%)", 0, v, 0, pol);
return r.template convert_to<int>();
}
template <class T, expression_template_option ExpressionTemplates>
inline int iround(const number<T, ExpressionTemplates>& v)
{
return iround(v, boost::math::policies::policy<>());
}
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline long lround(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = round(v, pol);
if((r > (std::numeric_limits<long>::max)()) || r < (std::numeric_limits<long>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::lround<%1%>(%1%)", 0, number_type(v), 0L, pol);
return r.template convert_to<long>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline long lround(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return lround(v, boost::math::policies::policy<>());
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline long lround(const number<T, ExpressionTemplates>& v, const Policy& pol)
{
number<T, ExpressionTemplates> r = round(v, pol);
if((r > (std::numeric_limits<long>::max)()) || r < (std::numeric_limits<long>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::lround<%1%>(%1%)", 0, v, 0L, pol);
return r.template convert_to<long>();
}
template <class T, expression_template_option ExpressionTemplates>
inline long lround(const number<T, ExpressionTemplates>& v)
{
return lround(v, boost::math::policies::policy<>());
}
#ifndef BOOST_NO_LONG_LONG
template <class tag, class A1, class A2, class A3, class A4, class Policy>
inline boost::long_long_type llround(const detail::expression<tag, A1, A2, A3, A4>& v, const Policy& pol)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
number_type r = round(v, pol);
if((r > (std::numeric_limits<boost::long_long_type>::max)()) || r < (std::numeric_limits<boost::long_long_type>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::iround<%1%>(%1%)", 0, number_type(v), 0LL, pol);
return r.template convert_to<boost::long_long_type>();
}
template <class tag, class A1, class A2, class A3, class A4>
inline boost::long_long_type llround(const detail::expression<tag, A1, A2, A3, A4>& v)
{
return llround(v, boost::math::policies::policy<>());
}
template <class T, expression_template_option ExpressionTemplates, class Policy>
inline boost::long_long_type llround(const number<T, ExpressionTemplates>& v, const Policy& pol)
{
number<T, ExpressionTemplates> r = round(v, pol);
if((r > (std::numeric_limits<boost::long_long_type>::max)()) || r < (std::numeric_limits<boost::long_long_type>::min)() || !(boost::math::isfinite)(v))
return boost::math::policies::raise_rounding_error("boost::multiprecision::iround<%1%>(%1%)", 0, v, 0LL, pol);
return r.template convert_to<boost::long_long_type>();
}
template <class T, expression_template_option ExpressionTemplates>
inline boost::long_long_type llround(const number<T, ExpressionTemplates>& v)
{
return llround(v, boost::math::policies::policy<>());
}
#endif
//
// frexp does not return an expression template since we require the
// integer argument to be evaluated even if the returned value is
// not assigned to anything...
//
template <class T, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type frexp(const number<T, ExpressionTemplates>& v, short* pint)
{
using default_ops::eval_frexp;
number<T, ExpressionTemplates> result;
eval_frexp(result.backend(), v.backend(), pint);
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<typename detail::expression<tag, A1, A2, A3, A4>::result_type>::value == number_kind_floating_point, typename detail::expression<tag, A1, A2, A3, A4>::result_type>::type
frexp(const detail::expression<tag, A1, A2, A3, A4>& v, short* pint)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(frexp(static_cast<number_type>(v), pint));
}
template <class T, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type frexp(const number<T, ExpressionTemplates>& v, int* pint)
{
using default_ops::eval_frexp;
number<T, ExpressionTemplates> result;
eval_frexp(result.backend(), v.backend(), pint);
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<typename detail::expression<tag, A1, A2, A3, A4>::result_type>::value == number_kind_floating_point, typename detail::expression<tag, A1, A2, A3, A4>::result_type>::type
frexp(const detail::expression<tag, A1, A2, A3, A4>& v, int* pint)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(frexp(static_cast<number_type>(v), pint));
}
template <class T, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type frexp(const number<T, ExpressionTemplates>& v, long* pint)
{
using default_ops::eval_frexp;
number<T, ExpressionTemplates> result;
eval_frexp(result.backend(), v.backend(), pint);
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<typename detail::expression<tag, A1, A2, A3, A4>::result_type>::value == number_kind_floating_point, typename detail::expression<tag, A1, A2, A3, A4>::result_type>::type
frexp(const detail::expression<tag, A1, A2, A3, A4>& v, long* pint)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(frexp(static_cast<number_type>(v), pint));
}
template <class T, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type frexp(const number<T, ExpressionTemplates>& v, boost::long_long_type* pint)
{
using default_ops::eval_frexp;
number<T, ExpressionTemplates> result;
eval_frexp(result.backend(), v.backend(), pint);
return BOOST_MP_MOVE(result);
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<typename detail::expression<tag, A1, A2, A3, A4>::result_type>::value == number_kind_floating_point, typename detail::expression<tag, A1, A2, A3, A4>::result_type>::type
frexp(const detail::expression<tag, A1, A2, A3, A4>& v, boost::long_long_type* pint)
{
typedef typename detail::expression<tag, A1, A2, A3, A4>::result_type number_type;
return BOOST_MP_MOVE(frexp(static_cast<number_type>(v), pint));
}
//
// modf does not return an expression template since we require the
// second argument to be evaluated even if the returned value is
// not assigned to anything...
//
template <class T, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type modf(const number<T, ExpressionTemplates>& v, number<T, ExpressionTemplates>* pipart)
{
using default_ops::eval_modf;
number<T, ExpressionTemplates> result;
eval_modf(result.backend(), v.backend(), pipart ? &pipart->backend() : 0);
return BOOST_MP_MOVE(result);
}
template <class T, expression_template_option ExpressionTemplates, class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<T>::value == number_kind_floating_point, number<T, ExpressionTemplates> >::type modf(const detail::expression<tag, A1, A2, A3, A4>& v, number<T, ExpressionTemplates>* pipart)
{
using default_ops::eval_modf;
number<T, ExpressionTemplates> result, arg(v);
eval_modf(result.backend(), arg.backend(), pipart ? &pipart->backend() : 0);
return BOOST_MP_MOVE(result);
}
//
// Integer square root:
//
template <class B, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<B>::value == number_kind_integer, number<B, ExpressionTemplates> >::type
sqrt(const number<B, ExpressionTemplates>& x)
{
using default_ops::eval_integer_sqrt;
number<B, ExpressionTemplates> s, r;
eval_integer_sqrt(s.backend(), r.backend(), x.backend());
return s;
}
//
// fma:
//
namespace default_ops {
struct fma_func
{
template <class B, class T, class U, class V>
void operator()(B& result, const T& a, const U& b, const V& c)const
{
eval_multiply_add(result, a, b, c);
}
};
}
template <class Backend, class U, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_on> >::value == number_kind_floating_point>,
mpl::or_<
is_number<U>,
is_number_expression<U>,
is_arithmetic<U>
>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
detail::expression<detail::function, default_ops::fma_func, number<Backend, et_on>, U, V>
>::type
fma(const number<Backend, et_on>& a, const U& b, const V& c)
{
return detail::expression<detail::function, default_ops::fma_func, number<Backend, et_on>, U, V>(
default_ops::fma_func(), a, b, c);
}
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4, class U, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<typename detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type >::value == number_kind_floating_point>,
mpl::or_<
is_number<U>,
is_number_expression<U>,
is_arithmetic<U>
>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
detail::expression<detail::function, default_ops::fma_func, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, U, V>
>::type
fma(const detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& a, const U& b, const V& c)
{
return detail::expression<detail::function, default_ops::fma_func, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, U, V>(
default_ops::fma_func(), a, b, c);
}
template <class Backend, class U, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_off> >::value == number_kind_floating_point>,
mpl::or_<
is_number<U>,
is_number_expression<U>,
is_arithmetic<U>
>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
number<Backend, et_off>
>::type
fma(const number<Backend, et_off>& a, const U& b, const V& c)
{
using default_ops::eval_multiply_add;
number<Backend, et_off> result;
eval_multiply_add(result.backend(), number<Backend, et_off>::canonical_value(a), number<Backend, et_off>::canonical_value(b), number<Backend, et_off>::canonical_value(c));
return BOOST_MP_MOVE(result);
}
template <class U, class Backend, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_on> >::value == number_kind_floating_point>,
is_arithmetic<U>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
detail::expression<detail::function, default_ops::fma_func, U, number<Backend, et_on>, V>
>::type
fma(const U& a, const number<Backend, et_on>& b, const V& c)
{
return detail::expression<detail::function, default_ops::fma_func, U, number<Backend, et_on>, V>(
default_ops::fma_func(), a, b, c);
}
template <class U, class tag, class Arg1, class Arg2, class Arg3, class Arg4, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<typename detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type >::value == number_kind_floating_point>,
is_arithmetic<U>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
detail::expression<detail::function, default_ops::fma_func, U, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, V>
>::type
fma(const U& a, const detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& b, const V& c)
{
return detail::expression<detail::function, default_ops::fma_func, U, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, V>(
default_ops::fma_func(), a, b, c);
}
template <class U, class Backend, class V>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_off> >::value == number_kind_floating_point>,
is_arithmetic<U>,
mpl::or_<
is_number<V>,
is_number_expression<V>,
is_arithmetic<V>
>
>,
number<Backend, et_off>
>::type
fma(const U& a, const number<Backend, et_off>& b, const V& c)
{
using default_ops::eval_multiply_add;
number<Backend, et_off> result;
eval_multiply_add(result.backend(), number<Backend, et_off>::canonical_value(a), number<Backend, et_off>::canonical_value(b), number<Backend, et_off>::canonical_value(c));
return BOOST_MP_MOVE(result);
}
template <class U, class V, class Backend>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_on> >::value == number_kind_floating_point>,
is_arithmetic<U>,
is_arithmetic<V>
>,
detail::expression<detail::function, default_ops::fma_func, U, V, number<Backend, et_on> >
>::type
fma(const U& a, const V& b, const number<Backend, et_on>& c)
{
return detail::expression<detail::function, default_ops::fma_func, U, V, number<Backend, et_on> >(
default_ops::fma_func(), a, b, c);
}
template <class U, class V, class tag, class Arg1, class Arg2, class Arg3, class Arg4>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<typename detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type >::value == number_kind_floating_point>,
is_arithmetic<U>,
is_arithmetic<V>
>,
detail::expression<detail::function, default_ops::fma_func, U, V, detail::expression<tag, Arg1, Arg2, Arg3, Arg4> >
>::type
fma(const U& a, const V& b, const detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& c)
{
return detail::expression<detail::function, default_ops::fma_func, U, V, detail::expression<tag, Arg1, Arg2, Arg3, Arg4> >(
default_ops::fma_func(), a, b, c);
}
template <class U, class V, class Backend>
inline typename enable_if<
mpl::and_<
mpl::bool_<number_category<number<Backend, et_off> >::value == number_kind_floating_point>,
is_arithmetic<U>,
is_arithmetic<V>
>,
number<Backend, et_off>
>::type
fma(const U& a, const V& b, const number<Backend, et_off>& c)
{
using default_ops::eval_multiply_add;
number<Backend, et_off> result;
eval_multiply_add(result.backend(), number<Backend, et_off>::canonical_value(a), number<Backend, et_off>::canonical_value(b), number<Backend, et_off>::canonical_value(c));
return BOOST_MP_MOVE(result);
}
namespace default_ops {
struct remquo_func
{
template <class B, class T, class U>
void operator()(B& result, const T& a, const U& b, int* pi)const
{
eval_remquo(result, a, b, pi);
}
};
}
template <class Backend, class U>
inline typename enable_if_c<
number_category<number<Backend, et_on> >::value == number_kind_floating_point,
detail::expression<detail::function, default_ops::remquo_func, number<Backend, et_on>, U, int*>
>::type
remquo(const number<Backend, et_on>& a, const U& b, int* pi)
{
return detail::expression<detail::function, default_ops::remquo_func, number<Backend, et_on>, U, int*>(
default_ops::remquo_func(), a, b, pi);
}
template <class tag, class Arg1, class Arg2, class Arg3, class Arg4, class U>
inline typename enable_if_c<
number_category<typename detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type >::value == number_kind_floating_point,
detail::expression<detail::function, default_ops::remquo_func, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, U, int*>
>::type
remquo(const detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& a, const U& b, int* pi)
{
return detail::expression<detail::function, default_ops::remquo_func, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, U, int*>(
default_ops::remquo_func(), a, b, pi);
}
template <class U, class Backend>
inline typename enable_if_c<
(number_category<number<Backend, et_on> >::value == number_kind_floating_point)
&& !is_number<U>::value && !is_number_expression<U>::value,
detail::expression<detail::function, default_ops::remquo_func, U, number<Backend, et_on>, int*>
>::type
remquo(const U& a, const number<Backend, et_on>& b, int* pi)
{
return detail::expression<detail::function, default_ops::remquo_func, U, number<Backend, et_on>, int*>(
default_ops::remquo_func(), a, b, pi);
}
template <class U, class tag, class Arg1, class Arg2, class Arg3, class Arg4>
inline typename enable_if_c<
(number_category<typename detail::expression<tag, Arg1, Arg2, Arg3, Arg4>::result_type >::value == number_kind_floating_point)
&& !is_number<U>::value && !is_number_expression<U>::value,
detail::expression<detail::function, default_ops::remquo_func, U, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, int*>
>::type
remquo(const U& a, const detail::expression<tag, Arg1, Arg2, Arg3, Arg4>& b, int* pi)
{
return detail::expression<detail::function, default_ops::remquo_func, U, detail::expression<tag, Arg1, Arg2, Arg3, Arg4>, int*>(
default_ops::remquo_func(), a, b, pi);
}
template <class Backend, class U>
inline typename enable_if_c<
number_category<number<Backend, et_on> >::value == number_kind_floating_point,
number<Backend, et_off>
>::type
remquo(const number<Backend, et_off>& a, const U& b, int* pi)
{
using default_ops::eval_remquo;
number<Backend, et_off> result;
eval_remquo(result.backend(), a.backend(), number<Backend, et_off>::canonical_value(b), pi);
return BOOST_MP_MOVE(result);
}
template <class U, class Backend>
inline typename enable_if_c<
(number_category<number<Backend, et_on> >::value == number_kind_floating_point)
&& !is_number<U>::value && !is_number_expression<U>::value,
number<Backend, et_off>
>::type
remquo(const U& a, const number<Backend, et_off>& b, int* pi)
{
using default_ops::eval_remquo;
number<Backend, et_off> result;
eval_remquo(result.backend(), number<Backend, et_off>::canonical_value(a), b.backend(), pi);
return BOOST_MP_MOVE(result);
}
template <class B, expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<B>::value == number_kind_integer, number<B, ExpressionTemplates> >::type
sqrt(const number<B, ExpressionTemplates>& x, number<B, ExpressionTemplates>& r)
{
using default_ops::eval_integer_sqrt;
number<B, ExpressionTemplates> s;
eval_integer_sqrt(s.backend(), r.backend(), x.backend());
return s;
}
#define UNARY_OP_FUNCTOR(func, category)\
namespace detail{\
template <class Backend> \
struct BOOST_JOIN(func, _funct)\
{\
void operator()(Backend& result, const Backend& arg)const\
{\
using default_ops::BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result, arg);\
}\
};\
\
}\
\
template <class tag, class A1, class A2, class A3, class A4> \
inline typename enable_if_c<number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category,\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> > \
>::type \
func(const detail::expression<tag, A1, A2, A3, A4>& arg)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
> (\
detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>() \
, arg \
);\
}\
template <class Backend> \
inline typename enable_if_c<number_category<Backend>::value == category,\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> > \
>::type \
func(const number<Backend, et_on>& arg)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg \
);\
}\
template <class Backend> \
inline typename boost::enable_if_c<\
boost::multiprecision::number_category<Backend>::value == category,\
number<Backend, et_off> >::type \
func(const number<Backend, et_off>& arg)\
{\
number<Backend, et_off> result;\
using default_ops::BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result.backend(), arg.backend());\
return BOOST_MP_MOVE(result);\
}
#define BINARY_OP_FUNCTOR(func, category)\
namespace detail{\
template <class Backend> \
struct BOOST_JOIN(func, _funct)\
{\
void operator()(Backend& result, const Backend& arg, const Backend& a)const\
{\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result, arg, a);\
}\
template <class Arithmetic> \
void operator()(Backend& result, const Backend& arg, const Arithmetic& a)const\
{\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result, arg, a);\
}\
template <class Arithmetic> \
void operator()(Backend& result, const Arithmetic& arg, const Backend& a)const\
{\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result, arg, a);\
}\
};\
\
}\
template <class Backend> \
inline typename enable_if_c<number_category<Backend>::value == category,\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, number<Backend, et_on> > \
>::type \
func(const number<Backend, et_on>& arg, const number<Backend, et_on>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, number<Backend, et_on> \
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class Backend, class tag, class A1, class A2, class A3, class A4> \
inline typename enable_if_c<\
(number_category<Backend>::value == category) && (number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, detail::expression<tag, A1, A2, A3, A4> > \
>::type \
func(const number<Backend, et_on>& arg, const detail::expression<tag, A1, A2, A3, A4>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, detail::expression<tag, A1, A2, A3, A4> \
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class tag, class A1, class A2, class A3, class A4, class Backend> \
inline typename enable_if_c<\
(number_category<Backend>::value == category) && (number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, detail::expression<tag, A1, A2, A3, A4> \
, number<Backend, et_on> > \
>::type \
func(const detail::expression<tag, A1, A2, A3, A4>& arg, const number<Backend, et_on>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, detail::expression<tag, A1, A2, A3, A4> \
, number<Backend, et_on> \
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class tag, class A1, class A2, class A3, class A4, class tagb, class A1b, class A2b, class A3b, class A4b> \
inline typename enable_if_c<\
(number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category) && (number_category<detail::expression<tagb, A1b, A2b, A3b, A4b> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, detail::expression<tagb, A1b, A2b, A3b, A4b> > \
>::type \
func(const detail::expression<tag, A1, A2, A3, A4>& arg, const detail::expression<tagb, A1b, A2b, A3b, A4b>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, detail::expression<tagb, A1b, A2b, A3b, A4b> \
>(\
detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>() \
, arg,\
a\
);\
}\
template <class Backend, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<Backend>::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, Arithmetic\
> \
>::type \
func(const number<Backend, et_on>& arg, const Arithmetic& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, Arithmetic\
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class tag, class A1, class A2, class A3, class A4, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, Arithmetic\
> \
>::type \
func(const detail::expression<tag, A1, A2, A3, A4>& arg, const Arithmetic& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, Arithmetic\
>(\
detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>() \
, arg,\
a\
);\
}\
template <class Backend, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<Backend>::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, Arithmetic \
, number<Backend, et_on> \
> \
>::type \
func(const Arithmetic& arg, const number<Backend, et_on>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, Arithmetic \
, number<Backend, et_on> \
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class tag, class A1, class A2, class A3, class A4, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, Arithmetic \
, detail::expression<tag, A1, A2, A3, A4> \
> \
>::type \
func(const Arithmetic& arg, const detail::expression<tag, A1, A2, A3, A4>& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, Arithmetic \
, detail::expression<tag, A1, A2, A3, A4> \
>(\
detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>() \
, arg,\
a\
);\
}\
template <class Backend> \
inline typename enable_if_c<(number_category<Backend>::value == category),\
number<Backend, et_off> >::type \
func(const number<Backend, et_off>& arg, const number<Backend, et_off>& a)\
{\
number<Backend, et_off> result;\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result.backend(), arg.backend(), a.backend());\
return BOOST_MP_MOVE(result);\
}\
template <class Backend, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<Backend>::value == category),\
number<Backend, et_off> \
>::type \
func(const number<Backend, et_off>& arg, const Arithmetic& a)\
{\
typedef typename detail::canonical<Arithmetic, Backend>::type canonical_type;\
number<Backend, et_off> result;\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result.backend(), arg.backend(), static_cast<canonical_type>(a));\
return BOOST_MP_MOVE(result);\
}\
template <class Backend, class Arithmetic> \
inline typename enable_if_c<\
is_arithmetic<Arithmetic>::value && (number_category<Backend>::value == category),\
number<Backend, et_off> \
>::type \
func(const Arithmetic& a, const number<Backend, et_off>& arg)\
{\
typedef typename detail::canonical<Arithmetic, Backend>::type canonical_type;\
number<Backend, et_off> result;\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result.backend(), static_cast<canonical_type>(a), arg.backend());\
return BOOST_MP_MOVE(result);\
}\
#define HETERO_BINARY_OP_FUNCTOR_B(func, Arg2, category)\
template <class tag, class A1, class A2, class A3, class A4> \
inline typename enable_if_c<\
(number_category<detail::expression<tag, A1, A2, A3, A4> >::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, Arg2> \
>::type \
func(const detail::expression<tag, A1, A2, A3, A4>& arg, Arg2 const& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type> \
, detail::expression<tag, A1, A2, A3, A4> \
, Arg2\
>(\
detail::BOOST_JOIN(func, _funct)<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>() \
, arg, a \
);\
}\
template <class Backend> \
inline typename enable_if_c<\
(number_category<Backend>::value == category),\
detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, Arg2> \
>::type \
func(const number<Backend, et_on>& arg, Arg2 const& a)\
{\
return detail::expression<\
detail::function\
, detail::BOOST_JOIN(func, _funct)<Backend> \
, number<Backend, et_on> \
, Arg2\
>(\
detail::BOOST_JOIN(func, _funct)<Backend>() \
, arg,\
a\
);\
}\
template <class Backend> \
inline typename enable_if_c<\
(number_category<Backend>::value == category),\
number<Backend, et_off> >::type \
func(const number<Backend, et_off>& arg, Arg2 const& a)\
{\
number<Backend, et_off> result;\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result.backend(), arg.backend(), a);\
return BOOST_MP_MOVE(result);\
}\
#define HETERO_BINARY_OP_FUNCTOR(func, Arg2, category)\
namespace detail{\
template <class Backend> \
struct BOOST_JOIN(func, _funct)\
{\
template <class Arg>\
void operator()(Backend& result, Backend const& arg, Arg a)const\
{\
using default_ops:: BOOST_JOIN(eval_,func);\
BOOST_JOIN(eval_,func)(result, arg, a);\
}\
};\
\
}\
\
HETERO_BINARY_OP_FUNCTOR_B(func, Arg2, category)
namespace detail{
template <class Backend>
struct abs_funct
{
void operator()(Backend& result, const Backend& arg)const
{
using default_ops::eval_abs;
eval_abs(result, arg);
}
};
}
template <class tag, class A1, class A2, class A3, class A4>
inline detail::expression<
detail::function
, detail::abs_funct<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>
, detail::expression<tag, A1, A2, A3, A4> >
abs(const detail::expression<tag, A1, A2, A3, A4>& arg)
{
return detail::expression<
detail::function
, detail::abs_funct<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>
, detail::expression<tag, A1, A2, A3, A4>
> (
detail::abs_funct<typename detail::backend_type<detail::expression<tag, A1, A2, A3, A4> >::type>()
, arg
);
}
template <class Backend>
inline detail::expression<
detail::function
, detail::abs_funct<Backend>
, number<Backend, et_on> >
abs(const number<Backend, et_on>& arg)
{
return detail::expression<
detail::function
, detail::abs_funct<Backend>
, number<Backend, et_on>
>(
detail::abs_funct<Backend>()
, arg
);
}
template <class Backend>
inline number<Backend, et_off>
abs(const number<Backend, et_off>& arg)
{
number<Backend, et_off> result;
using default_ops::eval_abs;
eval_abs(result.backend(), arg.backend());
return BOOST_MP_MOVE(result);
}
UNARY_OP_FUNCTOR(fabs, number_kind_floating_point)
UNARY_OP_FUNCTOR(sqrt, number_kind_floating_point)
UNARY_OP_FUNCTOR(floor, number_kind_floating_point)
UNARY_OP_FUNCTOR(ceil, number_kind_floating_point)
UNARY_OP_FUNCTOR(trunc, number_kind_floating_point)
UNARY_OP_FUNCTOR(round, number_kind_floating_point)
UNARY_OP_FUNCTOR(exp, number_kind_floating_point)
UNARY_OP_FUNCTOR(exp2, number_kind_floating_point)
UNARY_OP_FUNCTOR(log, number_kind_floating_point)
UNARY_OP_FUNCTOR(log10, number_kind_floating_point)
UNARY_OP_FUNCTOR(cos, number_kind_floating_point)
UNARY_OP_FUNCTOR(sin, number_kind_floating_point)
UNARY_OP_FUNCTOR(tan, number_kind_floating_point)
UNARY_OP_FUNCTOR(asin, number_kind_floating_point)
UNARY_OP_FUNCTOR(acos, number_kind_floating_point)
UNARY_OP_FUNCTOR(atan, number_kind_floating_point)
UNARY_OP_FUNCTOR(cosh, number_kind_floating_point)
UNARY_OP_FUNCTOR(sinh, number_kind_floating_point)
UNARY_OP_FUNCTOR(tanh, number_kind_floating_point)
UNARY_OP_FUNCTOR(log2, number_kind_floating_point)
UNARY_OP_FUNCTOR(nearbyint, number_kind_floating_point)
UNARY_OP_FUNCTOR(rint, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR(ldexp, short, number_kind_floating_point)
//HETERO_BINARY_OP_FUNCTOR(frexp, short*, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(ldexp, int, number_kind_floating_point)
//HETERO_BINARY_OP_FUNCTOR_B(frexp, int*, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(ldexp, long, number_kind_floating_point)
//HETERO_BINARY_OP_FUNCTOR_B(frexp, long*, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(ldexp, boost::long_long_type, number_kind_floating_point)
//HETERO_BINARY_OP_FUNCTOR_B(frexp, boost::long_long_type*, number_kind_floating_point)
BINARY_OP_FUNCTOR(pow, number_kind_floating_point)
BINARY_OP_FUNCTOR(fmod, number_kind_floating_point)
BINARY_OP_FUNCTOR(fmax, number_kind_floating_point)
BINARY_OP_FUNCTOR(fmin, number_kind_floating_point)
BINARY_OP_FUNCTOR(atan2, number_kind_floating_point)
BINARY_OP_FUNCTOR(fdim, number_kind_floating_point)
BINARY_OP_FUNCTOR(hypot, number_kind_floating_point)
BINARY_OP_FUNCTOR(remainder, number_kind_floating_point)
UNARY_OP_FUNCTOR(logb, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR(scalbn, short, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR(scalbln, short, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbn, int, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbln, int, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbn, long, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbln, long, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbn, boost::long_long_type, number_kind_floating_point)
HETERO_BINARY_OP_FUNCTOR_B(scalbln, boost::long_long_type, number_kind_floating_point)
//
// Integer functions:
//
BINARY_OP_FUNCTOR(gcd, number_kind_integer)
BINARY_OP_FUNCTOR(lcm, number_kind_integer)
HETERO_BINARY_OP_FUNCTOR_B(pow, unsigned, number_kind_integer)
#undef BINARY_OP_FUNCTOR
#undef UNARY_OP_FUNCTOR
//
// ilogb:
//
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline typename enable_if_c<number_category<Backend>::value == number_kind_floating_point, typename Backend::exponent_type>::type
ilogb(const multiprecision::number<Backend, ExpressionTemplates>& val)
{
using default_ops::eval_ilogb;
return eval_ilogb(val.backend());
}
template <class tag, class A1, class A2, class A3, class A4>
inline typename enable_if_c<number_category<detail::expression<tag, A1, A2, A3, A4> >::value == number_kind_floating_point, typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type::backend_type::exponent_type>::type
ilogb(const detail::expression<tag, A1, A2, A3, A4>& val)
{
using default_ops::eval_ilogb;
typename multiprecision::detail::expression<tag, A1, A2, A3, A4>::result_type arg(val);
return eval_ilogb(arg.backend());
}
} //namespace multiprecision
namespace math{
//
// Overload of Boost.Math functions that find the wrong overload when used with number:
//
namespace detail{
template <class T> T sinc_pi_imp(T);
template <class T> T sinhc_pi_imp(T);
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> sinc_pi(const multiprecision::number<Backend, ExpressionTemplates>& x)
{
return BOOST_MP_MOVE(detail::sinc_pi_imp(x));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates, class Policy>
inline multiprecision::number<Backend, ExpressionTemplates> sinc_pi(const multiprecision::number<Backend, ExpressionTemplates>& x, const Policy&)
{
return BOOST_MP_MOVE(detail::sinc_pi_imp(x));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates>
inline multiprecision::number<Backend, ExpressionTemplates> sinhc_pi(const multiprecision::number<Backend, ExpressionTemplates>& x)
{
return BOOST_MP_MOVE(detail::sinhc_pi_imp(x));
}
template <class Backend, multiprecision::expression_template_option ExpressionTemplates, class Policy>
inline multiprecision::number<Backend, ExpressionTemplates> sinhc_pi(const multiprecision::number<Backend, ExpressionTemplates>& x, const Policy&)
{
return BOOST_MP_MOVE(boost::math::sinhc_pi(x));
}
using boost::multiprecision::gcd;
using boost::multiprecision::lcm;
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
} // namespace math
namespace integer {
using boost::multiprecision::gcd;
using boost::multiprecision::lcm;
}
} // namespace boost
//
// This has to come last of all:
//
#include <boost/multiprecision/detail/no_et_ops.hpp>
#include <boost/multiprecision/detail/et_ops.hpp>
//
// min/max overloads:
//
#include <boost/multiprecision/detail/min_max.hpp>
#endif