boost/interprocess/sync/spin/condition.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_DETAIL_SPIN_CONDITION_HPP
#define BOOST_INTERPROCESS_DETAIL_SPIN_CONDITION_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/sync/spin/mutex.hpp>
#include <boost/interprocess/detail/atomic.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/detail/os_thread_functions.hpp>
#include <boost/interprocess/detail/timed_utils.hpp>
#include <boost/interprocess/sync/spin/wait.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/cstdint.hpp>
namespace boost {
namespace interprocess {
namespace ipcdetail {
class spin_condition
{
spin_condition(const spin_condition &);
spin_condition &operator=(const spin_condition &);
public:
spin_condition()
{
//Note that this class is initialized to zero.
//So zeroed memory can be interpreted as an initialized
//condition variable
m_command = SLEEP;
m_num_waiters = 0;
}
~spin_condition()
{
//Notify all waiting threads
//to allow POSIX semantics on condition destruction
this->notify_all();
}
void notify_one()
{ this->notify(NOTIFY_ONE); }
void notify_all()
{ this->notify(NOTIFY_ALL); }
template <typename L, typename TimePoint>
bool timed_wait(L& lock, const TimePoint &abs_time)
{
if (!lock)
throw lock_exception();
//Handle infinity absolute time here to avoid complications in do_timed_wait
if(is_pos_infinity(abs_time)){
this->wait(lock);
return true;
}
return this->do_timed_wait_impl<true>(abs_time, *lock.mutex());
}
template <typename L, typename TimePoint, typename Pr>
bool timed_wait(L& lock, const TimePoint &abs_time, Pr pred)
{
if (!lock)
throw lock_exception();
//Handle infinity absolute time here to avoid complications in do_timed_wait
if(is_pos_infinity(abs_time)){
this->wait(lock, pred);
return true;
}
while (!pred()){
if (!this->do_timed_wait_impl<true>(abs_time, *lock.mutex()))
return pred();
}
return true;
}
template <typename L>
void wait(L& lock)
{
if (!lock)
throw lock_exception();
this->do_timed_wait_impl<false>(0, *lock.mutex());
}
template <typename L, typename Pr>
void wait(L& lock, Pr pred)
{
if (!lock)
throw lock_exception();
while (!pred())
this->do_timed_wait_impl<false>(0, *lock.mutex());
}
private:
template<bool TimeoutEnabled, class InterprocessMutex, class TimePoint>
bool do_timed_wait_impl(const TimePoint &abs_time, InterprocessMutex &mut)
{
typedef boost::interprocess::scoped_lock<spin_mutex> InternalLock;
//The enter mutex guarantees that while executing a notification,
//no other thread can execute the do_timed_wait method.
{
//---------------------------------------------------------------
InternalLock lock;
get_lock(bool_<TimeoutEnabled>(), m_enter_mut, lock, abs_time);
if(!lock)
return false;
//---------------------------------------------------------------
//We increment the waiting thread count protected so that it will be
//always constant when another thread enters the notification logic.
//The increment marks this thread as "waiting on spin_condition"
atomic_inc32(const_cast<boost::uint32_t*>(&m_num_waiters));
//We unlock the external mutex atomically with the increment
mut.unlock();
}
//By default, we suppose that no timeout has happened
bool timed_out = false, unlock_enter_mut= false;
//Loop until a notification indicates that the thread should
//exit or timeout occurs
while(1){
//The thread sleeps/spins until a spin_condition commands a notification
//Notification occurred, we will lock the checking mutex so that
spin_wait swait;
while(atomic_read32(&m_command) == SLEEP){
swait.yield();
//Check for timeout
if(TimeoutEnabled){
TimePoint now = get_now<TimePoint>(bool_<TimeoutEnabled>());
if(now >= abs_time){
//If we can lock the mutex it means that no notification
//is being executed in this spin_condition variable
timed_out = m_enter_mut.try_lock();
//If locking fails, indicates that another thread is executing
//notification, so we play the notification game
if(!timed_out){
//There is an ongoing notification, we will try again later
continue;
}
//No notification in execution, since enter mutex is locked.
//We will execute time-out logic, so we will decrement count,
//release the enter mutex and return false.
break;
}
}
}
//If a timeout occurred, the mutex will not execute checking logic
if(TimeoutEnabled && timed_out){
//Decrement wait count
atomic_dec32(const_cast<boost::uint32_t*>(&m_num_waiters));
unlock_enter_mut = true;
break;
}
else{
boost::uint32_t result = atomic_cas32
(const_cast<boost::uint32_t*>(&m_command), SLEEP, NOTIFY_ONE);
if(result == SLEEP){
//Other thread has been notified and since it was a NOTIFY one
//command, this thread must sleep again
continue;
}
else if(result == NOTIFY_ONE){
//If it was a NOTIFY_ONE command, only this thread should
//exit. This thread has atomically marked command as sleep before
//so no other thread will exit.
//Decrement wait count.
unlock_enter_mut = true;
atomic_dec32(const_cast<boost::uint32_t*>(&m_num_waiters));
break;
}
else{
//If it is a NOTIFY_ALL command, all threads should return
//from do_timed_wait function. Decrement wait count.
unlock_enter_mut = 1 == atomic_dec32(const_cast<boost::uint32_t*>(&m_num_waiters));
//Check if this is the last thread of notify_all waiters
//Only the last thread will release the mutex
if(unlock_enter_mut){
atomic_cas32(const_cast<boost::uint32_t*>(&m_command), SLEEP, NOTIFY_ALL);
}
break;
}
}
}
//Unlock the enter mutex if it is a single notification, if this is
//the last notified thread in a notify_all or a timeout has occurred
if(unlock_enter_mut){
m_enter_mut.unlock();
}
//Lock external again before returning from the method
mut.lock();
return !timed_out;
}
template <class TimePoint>
static TimePoint get_now(bool_<true>)
{ return microsec_clock<TimePoint>::universal_time(); }
template <class TimePoint>
static TimePoint get_now(bool_<false>)
{ return TimePoint(); }
template <class Mutex, class Lock, class TimePoint>
static void get_lock(bool_<true>, Mutex &m, Lock &lck, const TimePoint &abs_time)
{
Lock dummy(m, abs_time);
lck = boost::move(dummy);
}
template <class Mutex, class Lock, class TimePoint>
static void get_lock(bool_<false>, Mutex &m, Lock &lck, const TimePoint &)
{
Lock dummy(m);
lck = boost::move(dummy);
}
void notify(boost::uint32_t command)
{
//This mutex guarantees that no other thread can enter to the
//do_timed_wait method logic, so that thread count will be
//constant until the function writes a NOTIFY_ALL command.
//It also guarantees that no other notification can be signaled
//on this spin_condition before this one ends
m_enter_mut.lock();
//Return if there are no waiters
if(!atomic_read32(&m_num_waiters)) {
m_enter_mut.unlock();
return;
}
//Notify that all threads should execute wait logic
spin_wait swait;
while(SLEEP != atomic_cas32(const_cast<boost::uint32_t*>(&m_command), command, SLEEP)){
swait.yield();
}
//The enter mutex will rest locked until the last waiting thread unlocks it
}
enum { SLEEP = 0, NOTIFY_ONE, NOTIFY_ALL };
spin_mutex m_enter_mut;
volatile boost::uint32_t m_command;
volatile boost::uint32_t m_num_waiters;
};
} //namespace ipcdetail
} //namespace interprocess
} //namespace boost
#include <boost/interprocess/detail/config_end.hpp>
#endif //BOOST_INTERPROCESS_DETAIL_SPIN_CONDITION_HPP