boost/histogram/axis/variant.hpp
// Copyright 2015-2019 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_AXIS_VARIANT_HPP
#define BOOST_HISTOGRAM_AXIS_VARIANT_HPP
#include <boost/core/nvp.hpp>
#include <boost/histogram/axis/iterator.hpp>
#include <boost/histogram/axis/polymorphic_bin.hpp>
#include <boost/histogram/axis/traits.hpp>
#include <boost/histogram/detail/relaxed_equal.hpp>
#include <boost/histogram/detail/static_if.hpp>
#include <boost/histogram/detail/type_name.hpp>
#include <boost/histogram/detail/variant_proxy.hpp>
#include <boost/mp11/algorithm.hpp> // mp_contains
#include <boost/mp11/list.hpp> // mp_first
#include <boost/throw_exception.hpp>
#include <boost/variant2/variant.hpp>
#include <stdexcept>
#include <type_traits>
#include <utility>
namespace boost {
namespace histogram {
namespace axis {
/// Polymorphic axis type
template <class... Ts>
class variant : public iterator_mixin<variant<Ts...>> {
using impl_type = boost::variant2::variant<Ts...>;
template <class T>
using is_bounded_type = mp11::mp_contains<variant, std::decay_t<T>>;
template <class T>
using requires_bounded_type = std::enable_if_t<is_bounded_type<T>::value>;
using metadata_type = std::remove_const_t<std::remove_reference_t<decltype(
traits::metadata(std::declval<std::remove_pointer_t<mp11::mp_first<variant>>>()))>>;
public:
// cannot import ctors with using directive, it breaks gcc and msvc
variant() = default;
variant(const variant&) = default;
variant& operator=(const variant&) = default;
variant(variant&&) = default;
variant& operator=(variant&&) = default;
template <class T, class = requires_bounded_type<T>>
variant(T&& t) : impl(std::forward<T>(t)) {}
template <class T, class = requires_bounded_type<T>>
variant& operator=(T&& t) {
impl = std::forward<T>(t);
return *this;
}
template <class... Us>
variant(const variant<Us...>& u) {
this->operator=(u);
}
template <class... Us>
variant& operator=(const variant<Us...>& u) {
visit(
[this](const auto& u) {
using U = std::decay_t<decltype(u)>;
detail::static_if<is_bounded_type<U>>(
[this](const auto& u) { this->operator=(u); },
[](const auto&) {
BOOST_THROW_EXCEPTION(std::runtime_error(
detail::type_name<U>() + " is not convertible to a bounded type of " +
detail::type_name<variant>()));
},
u);
},
u);
return *this;
}
/// Return size of axis.
index_type size() const {
return visit([](const auto& a) -> index_type { return a.size(); }, *this);
}
/// Return options of axis or option::none_t if axis has no options.
unsigned options() const {
return visit([](const auto& a) { return traits::options(a); }, *this);
}
/// Returns true if the axis is inclusive or false.
bool inclusive() const {
return visit([](const auto& a) { return traits::inclusive(a); }, *this);
}
/// Returns true if the axis is ordered or false.
bool ordered() const {
return visit([](const auto& a) { return traits::ordered(a); }, *this);
}
/// Returns true if the axis is continuous or false.
bool continuous() const {
return visit([](const auto& a) { return traits::continuous(a); }, *this);
}
/// Return reference to const metadata or instance of null_type if axis has no
/// metadata.
metadata_type& metadata() const {
return visit(
[](const auto& a) -> metadata_type& {
using M = decltype(traits::metadata(a));
return detail::static_if<std::is_same<M, metadata_type&>>(
[](const auto& a) -> metadata_type& { return traits::metadata(a); },
[](const auto&) -> metadata_type& {
BOOST_THROW_EXCEPTION(std::runtime_error(
"cannot return metadata of type " + detail::type_name<M>() +
" through axis::variant interface which uses type " +
detail::type_name<metadata_type>() +
"; use boost::histogram::axis::get to obtain a reference "
"of this axis type"));
},
a);
},
*this);
}
/// Return reference to metadata or instance of null_type if axis has no
/// metadata.
metadata_type& metadata() {
return visit(
[](auto& a) -> metadata_type& {
using M = decltype(traits::metadata(a));
return detail::static_if<std::is_same<M, metadata_type&>>(
[](auto& a) -> metadata_type& { return traits::metadata(a); },
[](auto&) -> metadata_type& {
BOOST_THROW_EXCEPTION(std::runtime_error(
"cannot return metadata of type " + detail::type_name<M>() +
" through axis::variant interface which uses type " +
detail::type_name<metadata_type>() +
"; use boost::histogram::axis::get to obtain a reference "
"of this axis type"));
},
a);
},
*this);
}
/** Return index for value argument.
Throws std::invalid_argument if axis has incompatible call signature.
*/
template <class U>
index_type index(const U& u) const {
return visit([&u](const auto& a) { return traits::index(a, u); }, *this);
}
/** Return value for index argument.
Only works for axes with value method that returns something convertible
to double and will throw a runtime_error otherwise, see
axis::traits::value().
*/
double value(real_index_type idx) const {
return visit([idx](const auto& a) { return traits::value_as<double>(a, idx); },
*this);
}
/** Return bin for index argument.
Only works for axes with value method that returns something convertible
to double and will throw a runtime_error otherwise, see
axis::traits::value().
*/
auto bin(index_type idx) const {
return visit(
[idx](const auto& a) {
return detail::value_method_switch(
[idx](const auto& a) { // axis is discrete
const double x = traits::value_as<double>(a, idx);
return polymorphic_bin<double>(x, x);
},
[idx](const auto& a) { // axis is continuous
const double x1 = traits::value_as<double>(a, idx);
const double x2 = traits::value_as<double>(a, idx + 1);
return polymorphic_bin<double>(x1, x2);
},
a, detail::priority<1>{});
},
*this);
}
template <class Archive>
void serialize(Archive& ar, unsigned /* version */) {
detail::variant_proxy<variant> p{*this};
ar& make_nvp("variant", p);
}
private:
impl_type impl;
friend struct detail::variant_access;
friend struct boost::histogram::unsafe_access;
};
// specialization for empty argument list, useful for meta-programming
template <>
class variant<> {};
/// Apply visitor to variant (reference).
template <class Visitor, class... Us>
decltype(auto) visit(Visitor&& vis, variant<Us...>& var) {
return detail::variant_access::visit(vis, var);
}
/// Apply visitor to variant (movable reference).
template <class Visitor, class... Us>
decltype(auto) visit(Visitor&& vis, variant<Us...>&& var) {
return detail::variant_access::visit(vis, std::move(var));
}
/// Apply visitor to variant (const reference).
template <class Visitor, class... Us>
decltype(auto) visit(Visitor&& vis, const variant<Us...>& var) {
return detail::variant_access::visit(vis, var);
}
/// Returns pointer to T in variant or null pointer if type does not match.
template <class T, class... Us>
auto get_if(variant<Us...>* v) {
return detail::variant_access::template get_if<T>(v);
}
/// Returns pointer to const T in variant or null pointer if type does not match.
template <class T, class... Us>
auto get_if(const variant<Us...>* v) {
return detail::variant_access::template get_if<T>(v);
}
/// Return reference to T, throws std::runtime_error if type does not match.
template <class T, class... Us>
decltype(auto) get(variant<Us...>& v) {
auto tp = get_if<T>(&v);
if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type"));
return *tp;
}
/// Return movable reference to T, throws unspecified exception if type does not match.
template <class T, class... Us>
decltype(auto) get(variant<Us...>&& v) {
auto tp = get_if<T>(&v);
if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type"));
return std::move(*tp);
}
/// Return const reference to T, throws unspecified exception if type does not match.
template <class T, class... Us>
decltype(auto) get(const variant<Us...>& v) {
auto tp = get_if<T>(&v);
if (!tp) BOOST_THROW_EXCEPTION(std::runtime_error("T is not the held type"));
return *tp;
}
// pass-through version of visit for generic programming
template <class Visitor, class T>
decltype(auto) visit(Visitor&& vis, T&& var) {
return std::forward<Visitor>(vis)(std::forward<T>(var));
}
// pass-through version of get for generic programming
template <class T, class U>
decltype(auto) get(U&& u) {
return std::forward<U>(u);
}
// pass-through version of get_if for generic programming
template <class T, class U>
auto get_if(U* u) {
return reinterpret_cast<T*>(std::is_same<T, std::decay_t<U>>::value ? u : nullptr);
}
// pass-through version of get_if for generic programming
template <class T, class U>
auto get_if(const U* u) {
return reinterpret_cast<const T*>(std::is_same<T, std::decay_t<U>>::value ? u
: nullptr);
}
/** Compare two variants.
Return true if the variants point to the same concrete axis type and the types compare
equal. Otherwise return false.
*/
template <class... Us, class... Vs>
bool operator==(const variant<Us...>& u, const variant<Vs...>& v) noexcept {
return visit([&](const auto& vi) { return u == vi; }, v);
}
/** Compare variant with a concrete axis type.
Return true if the variant point to the same concrete axis type and the types compare
equal. Otherwise return false.
*/
template <class... Us, class T>
bool operator==(const variant<Us...>& u, const T& t) noexcept {
using V = variant<Us...>;
return detail::static_if_c<(mp11::mp_contains<V, T>::value ||
mp11::mp_contains<V, T*>::value ||
mp11::mp_contains<V, const T*>::value)>(
[&](const auto& t) {
using U = std::decay_t<decltype(t)>;
const U* tp = detail::variant_access::template get_if<U>(&u);
return tp && detail::relaxed_equal{}(*tp, t);
},
[&](const auto&) { return false; }, t);
}
template <class T, class... Us>
bool operator==(const T& t, const variant<Us...>& u) noexcept {
return u == t;
}
/// The negation of operator==.
template <class... Us, class... Ts>
bool operator!=(const variant<Us...>& u, const variant<Ts...>& t) noexcept {
return !(u == t);
}
/// The negation of operator==.
template <class... Us, class T>
bool operator!=(const variant<Us...>& u, const T& t) noexcept {
return !(u == t);
}
/// The negation of operator==.
template <class T, class... Us>
bool operator!=(const T& t, const variant<Us...>& u) noexcept {
return u != t;
}
} // namespace axis
} // namespace histogram
} // namespace boost
#endif