boost/math/special_functions/detail/hypergeometric_0F1_bessel.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2014 Anton Bikineev
// Copyright 2014 Christopher Kormanyos
// Copyright 2014 John Maddock
// Copyright 2014 Paul Bristow
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_MATH_HYPERGEOMETRIC_0F1_BESSEL_HPP
#define BOOST_MATH_HYPERGEOMETRIC_0F1_BESSEL_HPP
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/gamma.hpp>
namespace boost { namespace math { namespace detail {
template <class T, class Policy>
inline T hypergeometric_0F1_bessel(const T& b, const T& z, const Policy& pol)
{
BOOST_MATH_STD_USING
const bool is_z_nonpositive = z <= 0;
const T sqrt_z = is_z_nonpositive ? T(sqrt(-z)) : T(sqrt(z));
const T bessel_mult = is_z_nonpositive ?
boost::math::cyl_bessel_j(b - 1, 2 * sqrt_z, pol) :
boost::math::cyl_bessel_i(b - 1, 2 * sqrt_z, pol) ;
if (b > boost::math::max_factorial<T>::value)
{
const T lsqrt_z = log(sqrt_z);
const T lsqrt_z_pow_b = (b - 1) * lsqrt_z;
T lg = (boost::math::lgamma(b, pol) - lsqrt_z_pow_b);
lg = exp(lg);
return lg * bessel_mult;
}
else
{
const T sqrt_z_pow_b = pow(sqrt_z, b - 1);
return (boost::math::tgamma(b, pol) / sqrt_z_pow_b) * bessel_mult;
}
}
} } } // namespaces
#endif // BOOST_MATH_HYPERGEOMETRIC_0F1_BESSEL_HPP