boost/math/special_functions/detail/hypergeometric_pade.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2014 Anton Bikineev
// Copyright 2014 Christopher Kormanyos
// Copyright 2014 John Maddock
// Copyright 2014 Paul Bristow
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_MATH_HYPERGEOMETRIC_PADE_HPP
#define BOOST_MATH_HYPERGEOMETRIC_PADE_HPP
namespace boost{ namespace math{ namespace detail{
// Luke: C ---------- SUBROUTINE R1F1P(CP, Z, A, B, N) ----------
// Luke: C ----- PADE APPROXIMATION OF 1F1( 1 ; CP ; -Z ) -------
template <class T, class Policy>
inline T hypergeometric_1F1_pade(const T& cp, const T& zp, const Policy& )
{
BOOST_MATH_STD_USING
static const T one = T(1);
// Luke: C ------------- INITIALIZATION -------------
const T z = -zp;
const T zz = z * z;
T b0 = one;
T a0 = one;
T xi1 = one;
T ct1 = cp + one;
T cp1 = cp - one;
T b1 = one + (z / ct1);
T a1 = b1 - (z / cp);
const unsigned max_iterations = boost::math::policies::get_max_series_iterations<Policy>();
T b2 = T(0), a2 = T(0);
T result = T(0), prev_result;
for (unsigned k = 1; k < max_iterations; ++k)
{
// Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
// Luke: C ----------- FOR THE RECURSION ------------
const T ct2 = ct1 * ct1;
const T g1 = one + ((cp1 / (ct2 + ct1 + ct1)) * z);
const T g2 = ((xi1 / (ct2 - one)) * ((xi1 + cp1) / ct2)) * zz;
// Luke: C ------- THE RECURRENCE RELATIONS ---------
// Luke: C ------------ ARE AS FOLLOWS --------------
b2 = (g1 * b1) + (g2 * b0);
a2 = (g1 * a1) + (g2 * a0);
prev_result = result;
result = a2 / b2;
// condition for interruption
if ((fabs(result) * boost::math::tools::epsilon<T>()) > fabs(result - prev_result))
break;
b0 = b1; b1 = b2;
a0 = a1; a1 = a2;
ct1 += 2;
xi1 += 1;
}
return a2 / b2;
}
// Luke: C -------- SUBROUTINE R2F1P(BP, CP, Z, A, B, N) --------
// Luke: C ---- PADE APPROXIMATION OF 2F1( 1 , BP; CP ; -Z ) ----
template <class T, class Policy>
inline T hypergeometric_2F1_pade(const T& bp, const T& cp, const T& zp, const Policy&)
{
BOOST_MATH_STD_USING
static const T one = T(1);
// Luke: C ---------- INITIALIZATION -----------
const T z = -zp;
const T zz = z * z;
T b0 = one;
T a0 = one;
T xi1 = one;
T ct1 = cp;
const T b1c1 = (cp - one) * (bp - one);
T b1 = one + ((z / (cp + one)) * (bp + one));
T a1 = b1 - ((bp / cp) * z);
const unsigned max_iterations = boost::math::policies::get_max_series_iterations<Policy>();
T b2 = T(0), a2 = T(0);
T result = T(0), prev_result = a1 / b1;
for (unsigned k = 1; k < max_iterations; ++k)
{
// Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
// Luke: C ----------- FOR THE RECURSION ------------
const T ct2 = ct1 + xi1;
const T ct3 = ct2 * ct2;
const T g2 = (((((ct1 / ct3) * (bp - ct1)) / (ct3 - one)) * xi1) * (bp + xi1)) * zz;
++xi1;
const T g1 = one + (((((xi1 + xi1) * ct1) + b1c1) / (ct3 + ct2 + ct2)) * z);
// Luke: C ------- THE RECURRENCE RELATIONS ---------
// Luke: C ------------ ARE AS FOLLOWS --------------
b2 = (g1 * b1) + (g2 * b0);
a2 = (g1 * a1) + (g2 * a0);
prev_result = result;
result = a2 / b2;
// condition for interruption
if ((fabs(result) * boost::math::tools::epsilon<T>()) > fabs(result - prev_result))
break;
b0 = b1; b1 = b2;
a0 = a1; a1 = a2;
++ct1;
}
return a2 / b2;
}
} } } // namespaces
#endif // BOOST_MATH_HYPERGEOMETRIC_PADE_HPP