boost/math/special_functions/gegenbauer.hpp
// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_GEGENBAUER_HPP
#define BOOST_MATH_SPECIAL_GEGENBAUER_HPP
#include <limits>
#include <stdexcept>
#include <type_traits>
namespace boost { namespace math {
template<typename Real>
Real gegenbauer(unsigned n, Real lambda, Real x)
{
static_assert(!std::is_integral<Real>::value, "Gegenbauer polynomials required floating point arguments.");
if (lambda <= -1/Real(2)) {
throw std::domain_error("lambda > -1/2 is required.");
}
// The only reason to do this is because of some instability that could be present for x < 0 that is not present for x > 0.
// I haven't observed this, but then again, I haven't managed to test an exhaustive number of parameters.
// In any case, the routine is distinctly faster without this test:
//if (x < 0) {
// if (n&1) {
// return -gegenbauer(n, lambda, -x);
// }
// return gegenbauer(n, lambda, -x);
//}
if (n == 0) {
return Real(1);
}
Real y0 = 1;
Real y1 = 2*lambda*x;
Real yk = y1;
Real k = 2;
Real k_max = n*(1+std::numeric_limits<Real>::epsilon());
Real gamma = 2*(lambda - 1);
while(k < k_max)
{
yk = ( (2 + gamma/k)*x*y1 - (1+gamma/k)*y0);
y0 = y1;
y1 = yk;
k += 1;
}
return yk;
}
template<typename Real>
Real gegenbauer_derivative(unsigned n, Real lambda, Real x, unsigned k)
{
if (k > n) {
return Real(0);
}
Real gegen = gegenbauer<Real>(n-k, lambda + k, x);
Real scale = 1;
for (unsigned j = 0; j < k; ++j) {
scale *= 2*lambda;
lambda += 1;
}
return scale*gegen;
}
template<typename Real>
Real gegenbauer_prime(unsigned n, Real lambda, Real x) {
return gegenbauer_derivative<Real>(n, lambda, x, 1);
}
}}
#endif