boost/math/special_functions/hypergeometric_pFq.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2018 John Maddock
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_HYPERGEOMETRIC_PFQ_HPP
#define BOOST_MATH_HYPERGEOMETRIC_PFQ_HPP
#include <boost/math/special_functions/detail/hypergeometric_pFq_checked_series.hpp>
#include <boost/math/tools/throw_exception.hpp>
#include <chrono>
#include <initializer_list>
namespace boost {
namespace math {
namespace detail {
struct pFq_termination_exception : public std::runtime_error
{
pFq_termination_exception(const char* p) : std::runtime_error(p) {}
};
struct timed_iteration_terminator
{
timed_iteration_terminator(std::uintmax_t i, double t) : max_iter(i), max_time(t), start_time(std::chrono::system_clock::now()) {}
bool operator()(std::uintmax_t iter)const
{
if (iter > max_iter)
BOOST_MATH_THROW_EXCEPTION(boost::math::detail::pFq_termination_exception("pFq exceeded maximum permitted iterations."));
if (std::chrono::duration<double>(std::chrono::system_clock::now() - start_time).count() > max_time)
BOOST_MATH_THROW_EXCEPTION(boost::math::detail::pFq_termination_exception("pFq exceeded maximum permitted evaluation time."));
return false;
}
std::uintmax_t max_iter;
double max_time;
std::chrono::system_clock::time_point start_time;
};
}
template <class Seq, class Real, class Policy>
inline typename tools::promote_args<Real, typename Seq::value_type>::type hypergeometric_pFq(const Seq& aj, const Seq& bj, const Real& z, Real* p_abs_error, const Policy& pol)
{
typedef typename tools::promote_args<Real, typename Seq::value_type>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
BOOST_MATH_STD_USING
long long scale = 0;
std::pair<value_type, value_type> r = boost::math::detail::hypergeometric_pFq_checked_series_impl(aj, bj, value_type(z), pol, boost::math::detail::iteration_terminator(boost::math::policies::get_max_series_iterations<forwarding_policy>()), scale);
r.first *= exp(Real(scale));
r.second *= exp(Real(scale));
if (p_abs_error)
*p_abs_error = static_cast<Real>(r.second) * boost::math::tools::epsilon<Real>();
return policies::checked_narrowing_cast<result_type, Policy>(r.first, "boost::math::hypergeometric_pFq<%1%>(%1%,%1%,%1%)");
}
template <class Seq, class Real>
inline typename tools::promote_args<Real, typename Seq::value_type>::type hypergeometric_pFq(const Seq& aj, const Seq& bj, const Real& z, Real* p_abs_error = 0)
{
return hypergeometric_pFq(aj, bj, z, p_abs_error, boost::math::policies::policy<>());
}
template <class R, class Real, class Policy>
inline typename tools::promote_args<Real, R>::type hypergeometric_pFq(const std::initializer_list<R>& aj, const std::initializer_list<R>& bj, const Real& z, Real* p_abs_error, const Policy& pol)
{
return hypergeometric_pFq<std::initializer_list<R>, Real, Policy>(aj, bj, z, p_abs_error, pol);
}
template <class R, class Real>
inline typename tools::promote_args<Real, R>::type hypergeometric_pFq(const std::initializer_list<R>& aj, const std::initializer_list<R>& bj, const Real& z, Real* p_abs_error = nullptr)
{
return hypergeometric_pFq<std::initializer_list<R>, Real>(aj, bj, z, p_abs_error);
}
template <class T>
struct scoped_precision
{
scoped_precision(unsigned p)
{
old_p = T::default_precision();
T::default_precision(p);
}
~scoped_precision()
{
T::default_precision(old_p);
}
unsigned old_p;
};
template <class Seq, class Real, class Policy>
Real hypergeometric_pFq_precision(const Seq& aj, const Seq& bj, Real z, unsigned digits10, double timeout, const Policy& pol)
{
unsigned current_precision = digits10 + 5;
for (auto ai = aj.begin(); ai != aj.end(); ++ai)
{
current_precision = (std::max)(current_precision, ai->precision());
}
for (auto bi = bj.begin(); bi != bj.end(); ++bi)
{
current_precision = (std::max)(current_precision, bi->precision());
}
current_precision = (std::max)(current_precision, z.precision());
Real r, norm;
std::vector<Real> aa(aj), bb(bj);
do
{
scoped_precision<Real> p(current_precision);
for (auto ai = aa.begin(); ai != aa.end(); ++ai)
ai->precision(current_precision);
for (auto bi = bb.begin(); bi != bb.end(); ++bi)
bi->precision(current_precision);
z.precision(current_precision);
try
{
long long scale = 0;
std::pair<Real, Real> rp = boost::math::detail::hypergeometric_pFq_checked_series_impl(aa, bb, z, pol, boost::math::detail::timed_iteration_terminator(boost::math::policies::get_max_series_iterations<Policy>(), timeout), scale);
rp.first *= exp(Real(scale));
rp.second *= exp(Real(scale));
r = rp.first;
norm = rp.second;
unsigned cancellation;
try {
cancellation = itrunc(log10(abs(norm / r)));
}
catch (const boost::math::rounding_error&)
{
// Happens when r is near enough zero:
cancellation = UINT_MAX;
}
if (cancellation >= current_precision - 1)
{
current_precision *= 2;
continue;
}
unsigned precision_obtained = current_precision - 1 - cancellation;
if (precision_obtained < digits10)
{
current_precision += digits10 - precision_obtained + 5;
}
else
break;
}
catch (const boost::math::evaluation_error&)
{
current_precision *= 2;
}
catch (const detail::pFq_termination_exception& e)
{
//
// Either we have exhausted the number of series iterations, or the timeout.
// Either way we quit now.
throw boost::math::evaluation_error(e.what());
}
} while (true);
return r;
}
template <class Seq, class Real>
Real hypergeometric_pFq_precision(const Seq& aj, const Seq& bj, const Real& z, unsigned digits10, double timeout = 0.5)
{
return hypergeometric_pFq_precision(aj, bj, z, digits10, timeout, boost::math::policies::policy<>());
}
template <class Real, class Policy>
Real hypergeometric_pFq_precision(const std::initializer_list<Real>& aj, const std::initializer_list<Real>& bj, const Real& z, unsigned digits10, double timeout, const Policy& pol)
{
return hypergeometric_pFq_precision< std::initializer_list<Real>, Real>(aj, bj, z, digits10, timeout, pol);
}
template <class Real>
Real hypergeometric_pFq_precision(const std::initializer_list<Real>& aj, const std::initializer_list<Real>& bj, const Real& z, unsigned digits10, double timeout = 0.5)
{
return hypergeometric_pFq_precision< std::initializer_list<Real>, Real>(aj, bj, z, digits10, timeout, boost::math::policies::policy<>());
}
}
} // namespaces
#endif // BOOST_MATH_BESSEL_ITERATORS_HPP