boost/math/special_functions/jacobi.hpp
// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_JACOBI_HPP
#define BOOST_MATH_SPECIAL_JACOBI_HPP
#include <limits>
#include <stdexcept>
namespace boost { namespace math {
template<typename Real>
Real jacobi(unsigned n, Real alpha, Real beta, Real x)
{
static_assert(!std::is_integral<Real>::value, "Jacobi polynomials do not work with integer arguments.");
if (n == 0) {
return Real(1);
}
Real y0 = 1;
Real y1 = (alpha+1) + (alpha+beta+2)*(x-1)/Real(2);
Real yk = y1;
Real k = 2;
Real k_max = n*(1+std::numeric_limits<Real>::epsilon());
while(k < k_max)
{
// Hoping for lots of common subexpression elimination by the compiler:
Real denom = 2*k*(k+alpha+beta)*(2*k+alpha+beta-2);
Real gamma1 = (2*k+alpha+beta-1)*( (2*k+alpha+beta)*(2*k+alpha+beta-2)*x + alpha*alpha -beta*beta);
Real gamma0 = -2*(k+alpha-1)*(k+beta-1)*(2*k+alpha+beta);
yk = (gamma1*y1 + gamma0*y0)/denom;
y0 = y1;
y1 = yk;
k += 1;
}
return yk;
}
template<typename Real>
Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k)
{
if (k > n) {
return Real(0);
}
Real scale = 1;
for(unsigned j = 1; j <= k; ++j) {
scale *= (alpha + beta + n + j)/2;
}
return scale*jacobi<Real>(n-k, alpha + k, beta+k, x);
}
template<typename Real>
Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x)
{
return jacobi_derivative<Real>(n, alpha, beta, x, 1);
}
template<typename Real>
Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x)
{
return jacobi_derivative<Real>(n, alpha, beta, x, 2);
}
}}
#endif