boost/math/special_functions/ulp.hpp
// (C) Copyright John Maddock 2015.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_ULP_HPP
#define BOOST_MATH_SPECIAL_ULP_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/next.hpp>
namespace boost{ namespace math{ namespace detail{
template <class T, class Policy>
T ulp_imp(const T& val, const std::true_type&, const Policy& pol)
{
BOOST_MATH_STD_USING
int expon;
static const char* function = "ulp<%1%>(%1%)";
int fpclass = (boost::math::fpclassify)(val);
if(fpclass == FP_NAN)
{
return policies::raise_domain_error<T>(
function,
"Argument must be finite, but got %1%", val, pol);
}
else if((fpclass == (int)FP_INFINITE) || (fabs(val) >= tools::max_value<T>()))
{
return (val < 0 ? -1 : 1) * policies::raise_overflow_error<T>(function, nullptr, pol);
}
else if(fpclass == FP_ZERO)
return detail::get_smallest_value<T>();
//
// This code is almost the same as that for float_next, except for negative integers,
// where we preserve the relation ulp(x) == ulp(-x) as does Java:
//
frexp(fabs(val), &expon);
T diff = ldexp(T(1), expon - tools::digits<T>());
if(diff == 0)
diff = detail::get_smallest_value<T>();
return diff;
}
// non-binary version:
template <class T, class Policy>
T ulp_imp(const T& val, const std::false_type&, const Policy& pol)
{
static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
BOOST_MATH_STD_USING
int expon;
static const char* function = "ulp<%1%>(%1%)";
int fpclass = (boost::math::fpclassify)(val);
if(fpclass == FP_NAN)
{
return policies::raise_domain_error<T>(
function,
"Argument must be finite, but got %1%", val, pol);
}
else if((fpclass == FP_INFINITE) || (fabs(val) >= tools::max_value<T>()))
{
return (val < 0 ? -1 : 1) * policies::raise_overflow_error<T>(function, nullptr, pol);
}
else if(fpclass == FP_ZERO)
return detail::get_smallest_value<T>();
//
// This code is almost the same as that for float_next, except for negative integers,
// where we preserve the relation ulp(x) == ulp(-x) as does Java:
//
expon = 1 + ilogb(fabs(val));
T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits);
if(diff == 0)
diff = detail::get_smallest_value<T>();
return diff;
}
}
template <class T, class Policy>
inline typename tools::promote_args<T>::type ulp(const T& val, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::ulp_imp(static_cast<result_type>(val), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol);
}
template <class T>
inline typename tools::promote_args<T>::type ulp(const T& val)
{
return ulp(val, policies::policy<>());
}
}} // namespaces
#endif // BOOST_MATH_SPECIAL_ULP_HPP