boost/math/tools/recurrence.hpp
// (C) Copyright Anton Bikineev 2014
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_RECURRENCE_HPP_
#define BOOST_MATH_TOOLS_RECURRENCE_HPP_
#include <type_traits>
#include <tuple>
#include <utility>
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/tuple.hpp>
#include <boost/math/tools/fraction.hpp>
#include <boost/math/tools/cxx03_warn.hpp>
#include <boost/math/tools/assert.hpp>
namespace boost {
namespace math {
namespace tools {
namespace detail{
//
// Function ratios directly from recurrence relations:
// H. Shintan, Note on Miller's recurrence algorithm, J. Sci. Hiroshima Univ. Ser. A-I
// Math., 29 (1965), pp. 121 - 133.
// and:
// COMPUTATIONAL ASPECTS OF THREE-TERM RECURRENCE RELATIONS
// WALTER GAUTSCHI
// SIAM REVIEW Vol. 9, No. 1, January, 1967
//
template <class Recurrence>
struct function_ratio_from_backwards_recurrence_fraction
{
typedef typename std::remove_reference<decltype(std::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
typedef std::pair<value_type, value_type> result_type;
function_ratio_from_backwards_recurrence_fraction(const Recurrence& r) : r(r), k(0) {}
result_type operator()()
{
value_type a, b, c;
std::tie(a, b, c) = r(k);
++k;
// an and bn defined as per Gauchi 1.16, not the same
// as the usual continued fraction a' and b's.
value_type bn = a / c;
value_type an = b / c;
return result_type(-bn, an);
}
private:
function_ratio_from_backwards_recurrence_fraction operator=(const function_ratio_from_backwards_recurrence_fraction&) = delete;
Recurrence r;
int k;
};
template <class R, class T>
struct recurrence_reverser
{
recurrence_reverser(const R& r) : r(r) {}
std::tuple<T, T, T> operator()(int i)
{
using std::swap;
std::tuple<T, T, T> t = r(-i);
swap(std::get<0>(t), std::get<2>(t));
return t;
}
R r;
};
template <class Recurrence>
struct recurrence_offsetter
{
typedef decltype(std::declval<Recurrence&>()(0)) result_type;
recurrence_offsetter(Recurrence const& rr, int offset) : r(rr), k(offset) {}
result_type operator()(int i)
{
return r(i + k);
}
private:
Recurrence r;
int k;
};
} // namespace detail
//
// Given a stable backwards recurrence relation:
// a f_n-1 + b f_n + c f_n+1 = 0
// returns the ratio f_n / f_n-1
//
// Recurrence: a functor that returns a tuple of the factors (a,b,c).
// factor: Convergence criteria, should be no less than machine epsilon.
// max_iter: Maximum iterations to use solving the continued fraction.
//
template <class Recurrence, class T>
T function_ratio_from_backwards_recurrence(const Recurrence& r, const T& factor, std::uintmax_t& max_iter)
{
detail::function_ratio_from_backwards_recurrence_fraction<Recurrence> f(r);
return boost::math::tools::continued_fraction_a(f, factor, max_iter);
}
//
// Given a stable forwards recurrence relation:
// a f_n-1 + b f_n + c f_n+1 = 0
// returns the ratio f_n / f_n+1
//
// Note that in most situations where this would be used, we're relying on
// pseudo-convergence, as in most cases f_n will not be minimal as N -> -INF
// as long as we reach convergence on the continued-fraction before f_n
// switches behaviour, we should be fine.
//
// Recurrence: a functor that returns a tuple of the factors (a,b,c).
// factor: Convergence criteria, should be no less than machine epsilon.
// max_iter: Maximum iterations to use solving the continued fraction.
//
template <class Recurrence, class T>
T function_ratio_from_forwards_recurrence(const Recurrence& r, const T& factor, std::uintmax_t& max_iter)
{
boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction<boost::math::tools::detail::recurrence_reverser<Recurrence, T> > f(r);
return boost::math::tools::continued_fraction_a(f, factor, max_iter);
}
// solves usual recurrence relation for homogeneous
// difference equation in stable forward direction
// a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0
//
// Params:
// get_coefs: functor returning a tuple, where
// get<0>() is a(n); get<1>() is b(n); get<2>() is c(n);
// last_index: index N to be found;
// first: w(-1);
// second: w(0);
//
template <class NextCoefs, class T>
inline T apply_recurrence_relation_forward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, long long* log_scaling = nullptr, T* previous = nullptr)
{
BOOST_MATH_STD_USING
using std::tuple;
using std::get;
using std::swap;
T third;
T a, b, c;
for (unsigned k = 0; k < number_of_steps; ++k)
{
tie(a, b, c) = get_coefs(k);
if ((log_scaling) &&
((fabs(tools::max_value<T>() * (c / (a * 2048))) < fabs(first))
|| (fabs(tools::max_value<T>() * (c / (b * 2048))) < fabs(second))
|| (fabs(tools::min_value<T>() * (c * 2048 / a)) > fabs(first))
|| (fabs(tools::min_value<T>() * (c * 2048 / b)) > fabs(second))
))
{
// Rescale everything:
long long log_scale = lltrunc(log(fabs(second)));
T scale = exp(T(-log_scale));
second *= scale;
first *= scale;
*log_scaling += log_scale;
}
// scale each part separately to avoid spurious overflow:
third = (a / -c) * first + (b / -c) * second;
BOOST_MATH_ASSERT((boost::math::isfinite)(third));
swap(first, second);
swap(second, third);
}
if (previous)
*previous = first;
return second;
}
// solves usual recurrence relation for homogeneous
// difference equation in stable backward direction
// a(n)w(n-1) + b(n)w(n) + c(n)w(n+1) = 0
//
// Params:
// get_coefs: functor returning a tuple, where
// get<0>() is a(n); get<1>() is b(n); get<2>() is c(n);
// number_of_steps: index N to be found;
// first: w(1);
// second: w(0);
//
template <class T, class NextCoefs>
inline T apply_recurrence_relation_backward(const NextCoefs& get_coefs, unsigned number_of_steps, T first, T second, long long* log_scaling = nullptr, T* previous = nullptr)
{
BOOST_MATH_STD_USING
using std::tuple;
using std::get;
using std::swap;
T next;
T a, b, c;
for (unsigned k = 0; k < number_of_steps; ++k)
{
tie(a, b, c) = get_coefs(-static_cast<int>(k));
if ((log_scaling) && (second != 0) &&
( (fabs(tools::max_value<T>() * (a / b) / 2048) < fabs(second))
|| (fabs(tools::max_value<T>() * (a / c) / 2048) < fabs(first))
|| (fabs(tools::min_value<T>() * (a / b) * 2048) > fabs(second))
|| (fabs(tools::min_value<T>() * (a / c) * 2048) > fabs(first))
))
{
// Rescale everything:
int log_scale = itrunc(log(fabs(second)));
T scale = exp(T(-log_scale));
second *= scale;
first *= scale;
*log_scaling += log_scale;
}
// scale each part separately to avoid spurious overflow:
next = (b / -a) * second + (c / -a) * first;
BOOST_MATH_ASSERT((boost::math::isfinite)(next));
swap(first, second);
swap(second, next);
}
if (previous)
*previous = first;
return second;
}
template <class Recurrence>
struct forward_recurrence_iterator
{
typedef typename std::remove_reference<decltype(std::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
forward_recurrence_iterator(const Recurrence& r, value_type f_n_minus_1, value_type f_n)
: f_n_minus_1(f_n_minus_1), f_n(f_n), coef(r), k(0) {}
forward_recurrence_iterator(const Recurrence& r, value_type f_n)
: f_n(f_n), coef(r), k(0)
{
std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<boost::math::policies::policy<> >();
f_n_minus_1 = f_n * boost::math::tools::function_ratio_from_forwards_recurrence(detail::recurrence_offsetter<Recurrence>(r, -1), value_type(boost::math::tools::epsilon<value_type>() * 2), max_iter);
boost::math::policies::check_series_iterations<value_type>("forward_recurrence_iterator<>::forward_recurrence_iterator", max_iter, boost::math::policies::policy<>());
}
forward_recurrence_iterator& operator++()
{
using std::swap;
value_type a, b, c;
std::tie(a, b, c) = coef(k);
value_type f_n_plus_1 = a * f_n_minus_1 / -c + b * f_n / -c;
swap(f_n_minus_1, f_n);
swap(f_n, f_n_plus_1);
++k;
return *this;
}
forward_recurrence_iterator operator++(int)
{
forward_recurrence_iterator t(*this);
++(*this);
return t;
}
value_type operator*() { return f_n; }
value_type f_n_minus_1, f_n;
Recurrence coef;
int k;
};
template <class Recurrence>
struct backward_recurrence_iterator
{
typedef typename std::remove_reference<decltype(std::get<0>(std::declval<Recurrence&>()(0)))>::type value_type;
backward_recurrence_iterator(const Recurrence& r, value_type f_n_plus_1, value_type f_n)
: f_n_plus_1(f_n_plus_1), f_n(f_n), coef(r), k(0) {}
backward_recurrence_iterator(const Recurrence& r, value_type f_n)
: f_n(f_n), coef(r), k(0)
{
std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<boost::math::policies::policy<> >();
f_n_plus_1 = f_n * boost::math::tools::function_ratio_from_backwards_recurrence(detail::recurrence_offsetter<Recurrence>(r, 1), value_type(boost::math::tools::epsilon<value_type>() * 2), max_iter);
boost::math::policies::check_series_iterations<value_type>("backward_recurrence_iterator<>::backward_recurrence_iterator", max_iter, boost::math::policies::policy<>());
}
backward_recurrence_iterator& operator++()
{
using std::swap;
value_type a, b, c;
std::tie(a, b, c) = coef(k);
value_type f_n_minus_1 = c * f_n_plus_1 / -a + b * f_n / -a;
swap(f_n_plus_1, f_n);
swap(f_n, f_n_minus_1);
--k;
return *this;
}
backward_recurrence_iterator operator++(int)
{
backward_recurrence_iterator t(*this);
++(*this);
return t;
}
value_type operator*() { return f_n; }
value_type f_n_plus_1, f_n;
Recurrence coef;
int k;
};
}
}
} // namespaces
#endif // BOOST_MATH_TOOLS_RECURRENCE_HPP_