boost/numeric/odeint/stepper/adams_bashforth_moulton.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/adams_bashforth_moulton.hpp
[begin_description]
Implementation of the Adams-Bashforth-Moulton method, a predictor-corrector multistep method.
[end_description]
Copyright 2011-2013 Karsten Ahnert
Copyright 2011-2013 Mario Mulansky
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_MOULTON_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_MOULTON_HPP_INCLUDED
#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/stepper/adams_bashforth.hpp>
#include <boost/numeric/odeint/stepper/adams_moulton.hpp>
namespace boost {
namespace numeric {
namespace odeint {
template<
size_t Steps ,
class State ,
class Value = double ,
class Deriv = State ,
class Time = Value ,
class Algebra = typename algebra_dispatcher< State >::algebra_type ,
class Operations = typename operations_dispatcher< State >::operations_type ,
class Resizer = initially_resizer,
class InitializingStepper = runge_kutta4< State , Value , Deriv , Time , Algebra , Operations, Resizer >
>
class adams_bashforth_moulton
{
#ifndef DOXYGEN_SKIP
BOOST_STATIC_ASSERT(( Steps > 0 ));
BOOST_STATIC_ASSERT(( Steps < 9 ));
#endif
public :
typedef State state_type;
typedef state_wrapper< state_type > wrapped_state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef state_wrapper< deriv_type > wrapped_deriv_type;
typedef Time time_type;
typedef Algebra algebra_type;
typedef Operations operations_type;
typedef Resizer resizer_type;
typedef stepper_tag stepper_category;
typedef InitializingStepper initializing_stepper_type;
static const size_t steps = Steps;
#ifndef DOXYGEN_SKIP
typedef adams_bashforth< steps , state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type, initializing_stepper_type > adams_bashforth_type;
typedef adams_moulton< steps , state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > adams_moulton_type;
typedef adams_bashforth_moulton< steps , state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type , initializing_stepper_type> stepper_type;
#endif //DOXYGEN_SKIP
typedef unsigned short order_type;
static const order_type order_value = steps;
/** \brief Constructs the adams_bashforth class. */
adams_bashforth_moulton( void )
: m_adams_bashforth() , m_adams_moulton( m_adams_bashforth.algebra() )
, m_x() , m_resizer()
{ }
adams_bashforth_moulton( const algebra_type &algebra )
: m_adams_bashforth( algebra ) , m_adams_moulton( m_adams_bashforth.algebra() )
, m_x() , m_resizer()
{ }
order_type order( void ) const { return order_value; }
template< class System , class StateInOut >
void do_step( System system , StateInOut &x , time_type t , time_type dt )
{
do_step_impl1( system , x , t , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
*/
template< class System , class StateInOut >
void do_step( System system , const StateInOut &x , time_type t , time_type dt )
{
do_step_impl1( system , x , t , dt );
}
template< class System , class StateIn , class StateOut >
void do_step( System system , const StateIn &in , time_type t , const StateOut &out , time_type dt )
{
do_step_impl2( system , in , t , out , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateOut.
*/
template< class System , class StateIn , class StateOut >
void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
{
do_step_impl2( system , in ,t , out , dt );
}
template< class StateType >
void adjust_size( const StateType &x )
{
m_adams_bashforth.adjust_size( x );
m_adams_moulton.adjust_size( x );
resize_impl( x );
}
template< class ExplicitStepper , class System , class StateIn >
void initialize( ExplicitStepper explicit_stepper , System system , StateIn &x , time_type &t , time_type dt )
{
m_adams_bashforth.initialize( explicit_stepper , system , x , t , dt );
}
template< class System , class StateIn >
void initialize( System system , StateIn &x , time_type &t , time_type dt )
{
m_adams_bashforth.initialize( system , x , t , dt );
}
void reset(void)
{
m_adams_bashforth.reset();
}
private:
template< typename System , typename StateInOut >
void do_step_impl1( System system , StateInOut &x , time_type t , time_type dt )
{
if( m_adams_bashforth.is_initialized() )
{
m_resizer.adjust_size( x , detail::bind( &stepper_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) );
m_adams_bashforth.do_step( system , x , t , m_x.m_v , dt );
m_adams_moulton.do_step( system , x , m_x.m_v , t+dt , x , dt , m_adams_bashforth.step_storage() );
}
else
{
m_adams_bashforth.do_step( system , x , t , dt );
}
}
template< typename System , typename StateIn , typename StateInOut >
void do_step_impl2( System system , StateIn const &in , time_type t , StateInOut & out , time_type dt )
{
if( m_adams_bashforth.is_initialized() )
{
m_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) );
m_adams_bashforth.do_step( system , in , t , m_x.m_v , dt );
m_adams_moulton.do_step( system , in , m_x.m_v , t+dt , out , dt , m_adams_bashforth.step_storage() );
}
else
{
m_adams_bashforth.do_step( system , in , t , out , dt );
}
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
return adjust_size_by_resizeability( m_x , x , typename is_resizeable< state_type >::type() );
}
adams_bashforth_type m_adams_bashforth;
adams_moulton_type m_adams_moulton;
wrapped_state_type m_x;
resizer_type m_resizer;
};
/********* DOXYGEN ********/
/**
* \class adams_bashforth_moulton
* \brief The Adams-Bashforth-Moulton multistep algorithm.
*
* The Adams-Bashforth method is a multi-step predictor-corrector algorithm
* with configurable step number. The step number is specified as template
* parameter Steps and it then uses the result from the previous Steps steps.
* See also
* <a href="http://en.wikipedia.org/wiki/Linear_multistep_method">en.wikipedia.org/wiki/Linear_multistep_method</a>.
* Currently, a maximum of Steps=8 is supported.
* The method is explicit and fulfills the Stepper concept. Step size control
* or continuous output are not provided.
*
* This class derives from algebra_base and inherits its interface via
* CRTP (current recurring template pattern). For more details see
* algebra_stepper_base.
*
* \tparam Steps The number of steps (maximal 8).
* \tparam State The state type.
* \tparam Value The value type.
* \tparam Deriv The type representing the time derivative of the state.
* \tparam Time The time representing the independent variable - the time.
* \tparam Algebra The algebra type.
* \tparam Operations The operations type.
* \tparam Resizer The resizer policy type.
* \tparam InitializingStepper The stepper for the first two steps.
*/
/**
* \fn adams_bashforth_moulton::adams_bashforth_moulton( const algebra_type &algebra )
* \brief Constructs the adams_bashforth class. This constructor can be used as a default
* constructor if the algebra has a default constructor.
* \param algebra A copy of algebra is made and stored.
*/
/**
* \fn adams_bashforth_moulton::order( void ) const
* \brief Returns the order of the algorithm, which is equal to the number of steps+1.
* \return order of the method.
*/
/**
* \fn adams_bashforth_moulton::do_step( System system , StateInOut &x , time_type t , time_type dt )
* \brief This method performs one step. It transforms the result in-place.
*
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn adams_bashforth_moulton::do_step( System system , const StateIn &in , time_type t , const StateOut &out , time_type dt )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn adams_bashforth_moulton::adjust_size( const StateType &x )
* \brief Adjust the size of all temporaries in the stepper manually.
* \param x A state from which the size of the temporaries to be resized is deduced.
*/
/**
* \fn adams_bashforth_moulton::initialize( ExplicitStepper explicit_stepper , System system , StateIn &x , time_type &t , time_type dt )
* \brief Initialized the stepper. Does Steps-1 steps with the explicit_stepper to fill the buffer.
* \note The state x and time t are updated to the values after Steps-1 initial steps.
* \param explicit_stepper the stepper used to fill the buffer of previous step results
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The initial state of the ODE which should be solved, updated after in this method.
* \param t The initial time, updated in this method.
* \param dt The step size.
*/
/**
* \fn adams_bashforth_moulton::initialize( System system , StateIn &x , time_type &t , time_type dt )
* \brief Initialized the stepper. Does Steps-1 steps using the standard initializing stepper
* of the underlying adams_bashforth stepper.
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn adams_bashforth_moulton::reset( void )
* \brief Resets the internal buffers of the stepper.
*/
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_MOULTON_HPP_INCLUDED