boost/compute/closure.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_CLOSURE_HPP
#define BOOST_COMPUTE_CLOSURE_HPP
#include <string>
#include <sstream>
#include <boost/config.hpp>
#include <boost/fusion/adapted/boost_tuple.hpp>
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/mpl/for_each.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/static_assert.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits/function_traits.hpp>
#include <boost/compute/cl.hpp>
#include <boost/compute/function.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/type_traits/detail/capture_traits.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class ResultType, class ArgTuple, class CaptureTuple>
class invoked_closure
{
public:
typedef ResultType result_type;
BOOST_STATIC_CONSTANT(
size_t, arity = boost::tuples::length<ArgTuple>::value
);
invoked_closure(const std::string &name,
const std::string &source,
const std::map<std::string, std::string> &definitions,
const ArgTuple &args,
const CaptureTuple &capture)
: m_name(name),
m_source(source),
m_definitions(definitions),
m_args(args),
m_capture(capture)
{
}
std::string name() const
{
return m_name;
}
std::string source() const
{
return m_source;
}
const std::map<std::string, std::string>& definitions() const
{
return m_definitions;
}
const ArgTuple& args() const
{
return m_args;
}
const CaptureTuple& capture() const
{
return m_capture;
}
private:
std::string m_name;
std::string m_source;
std::map<std::string, std::string> m_definitions;
ArgTuple m_args;
CaptureTuple m_capture;
};
} // end detail namespace
/// \internal_
template<class Signature, class CaptureTuple>
class closure
{
public:
typedef typename
boost::function_traits<Signature>::result_type result_type;
BOOST_STATIC_CONSTANT(
size_t, arity = boost::function_traits<Signature>::arity
);
closure(const std::string &name,
const CaptureTuple &capture,
const std::string &source)
: m_name(name),
m_source(source),
m_capture(capture)
{
}
~closure()
{
}
std::string name() const
{
return m_name;
}
/// \internal_
std::string source() const
{
return m_source;
}
/// \internal_
void define(std::string name, std::string value = std::string())
{
m_definitions[name] = value;
}
/// \internal_
detail::invoked_closure<result_type, boost::tuple<>, CaptureTuple>
operator()() const
{
BOOST_STATIC_ASSERT_MSG(
arity == 0,
"Non-nullary closure function invoked with zero arguments"
);
return detail::invoked_closure<result_type, boost::tuple<>, CaptureTuple>(
m_name, m_source, m_definitions, boost::make_tuple(), m_capture
);
}
/// \internal_
template<class Arg1>
detail::invoked_closure<result_type, boost::tuple<Arg1>, CaptureTuple>
operator()(const Arg1 &arg1) const
{
BOOST_STATIC_ASSERT_MSG(
arity == 1,
"Non-unary closure function invoked with one argument"
);
return detail::invoked_closure<result_type, boost::tuple<Arg1>, CaptureTuple>(
m_name, m_source, m_definitions, boost::make_tuple(arg1), m_capture
);
}
/// \internal_
template<class Arg1, class Arg2>
detail::invoked_closure<result_type, boost::tuple<Arg1, Arg2>, CaptureTuple>
operator()(const Arg1 &arg1, const Arg2 &arg2) const
{
BOOST_STATIC_ASSERT_MSG(
arity == 2,
"Non-binary closure function invoked with two arguments"
);
return detail::invoked_closure<result_type, boost::tuple<Arg1, Arg2>, CaptureTuple>(
m_name, m_source, m_definitions, boost::make_tuple(arg1, arg2), m_capture
);
}
/// \internal_
template<class Arg1, class Arg2, class Arg3>
detail::invoked_closure<result_type, boost::tuple<Arg1, Arg2, Arg3>, CaptureTuple>
operator()(const Arg1 &arg1, const Arg2 &arg2, const Arg3 &arg3) const
{
BOOST_STATIC_ASSERT_MSG(
arity == 3,
"Non-ternary closure function invoked with three arguments"
);
return detail::invoked_closure<result_type, boost::tuple<Arg1, Arg2, Arg3>, CaptureTuple>(
m_name, m_source, m_definitions, boost::make_tuple(arg1, arg2, arg3), m_capture
);
}
private:
std::string m_name;
std::string m_source;
std::map<std::string, std::string> m_definitions;
CaptureTuple m_capture;
};
namespace detail {
struct closure_signature_argument_inserter
{
closure_signature_argument_inserter(std::stringstream &s_,
const char *capture_string,
size_t last)
: s(s_)
{
n = 0;
m_last = last;
size_t capture_string_length = std::strlen(capture_string);
BOOST_ASSERT(capture_string[0] == '(' &&
capture_string[capture_string_length-1] == ')');
std::string capture_string_(capture_string + 1, capture_string_length - 2);
boost::split(m_capture_names, capture_string_ , boost::is_any_of(","));
}
template<class T>
void operator()(const T&) const
{
BOOST_ASSERT(n < m_capture_names.size());
// get captured variable name
std::string variable_name = m_capture_names[n];
// remove leading and trailing whitespace from variable name
boost::trim(variable_name);
s << capture_traits<T>::type_name() << " " << variable_name;
if(n+1 < m_last){
s << ", ";
}
n++;
}
mutable size_t n;
size_t m_last;
std::vector<std::string> m_capture_names;
std::stringstream &s;
};
template<class Signature, class CaptureTuple>
inline std::string
make_closure_declaration(const char *name,
const char *arguments,
const CaptureTuple &capture_tuple,
const char *capture_string)
{
typedef typename
boost::function_traits<Signature>::result_type result_type;
typedef typename
boost::function_types::parameter_types<Signature>::type parameter_types;
typedef typename
mpl::size<parameter_types>::type arity_type;
std::stringstream s;
s << "inline " << type_name<result_type>() << " " << name;
s << "(";
// insert function arguments
signature_argument_inserter i(s, arguments, arity_type::value);
mpl::for_each<
typename mpl::transform<parameter_types, boost::add_pointer<mpl::_1>
>::type>(i);
s << ", ";
// insert capture arguments
closure_signature_argument_inserter j(
s, capture_string, boost::tuples::length<CaptureTuple>::value
);
fusion::for_each(capture_tuple, j);
s << ")";
return s.str();
}
// used by the BOOST_COMPUTE_CLOSURE() macro to create a closure
// function with the given signature, name, capture, and source.
template<class Signature, class CaptureTuple>
inline closure<Signature, CaptureTuple>
make_closure_impl(const char *name,
const char *arguments,
const CaptureTuple &capture,
const char *capture_string,
const std::string &source)
{
std::stringstream s;
s << make_closure_declaration<Signature>(name, arguments, capture, capture_string);
s << source;
return closure<Signature, CaptureTuple>(name, capture, s.str());
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
/// Creates a closure function object with \p name and \p source.
///
/// \param return_type The return type for the function.
/// \param name The name of the function.
/// \param arguments A list of arguments for the function.
/// \param capture A list of variables to capture.
/// \param source The OpenCL C source code for the function.
///
/// For example, to create a function which checks if a 2D point is
/// contained in a circle of a given radius:
/// \code
/// // radius variable declared in C++
/// float radius = 1.5f;
///
/// // create a closure function which returns true if the 2D point
/// // argument is contained within a circle of the given radius
/// BOOST_COMPUTE_CLOSURE(bool, is_in_circle, (const float2_ p), (radius),
/// {
/// return sqrt(p.x*p.x + p.y*p.y) < radius;
/// });
///
/// // vector of 2D points
/// boost::compute::vector<float2_> points = ...
///
/// // count number of points in the circle
/// size_t count = boost::compute::count_if(
/// points.begin(), points.end(), is_in_circle, queue
/// );
/// \endcode
///
/// \see BOOST_COMPUTE_FUNCTION()
#ifdef BOOST_COMPUTE_DOXYGEN_INVOKED
#define BOOST_COMPUTE_CLOSURE(return_type, name, arguments, capture, source)
#else
#define BOOST_COMPUTE_CLOSURE(return_type, name, arguments, capture, ...) \
::boost::compute::closure< \
return_type arguments, BOOST_TYPEOF(boost::tie capture) \
> name = \
::boost::compute::detail::make_closure_impl< \
return_type arguments \
>( \
#name, #arguments, boost::tie capture, #capture, #__VA_ARGS__ \
)
#endif
#endif // BOOST_COMPUTE_CLOSURE_HPP