boost/gil/extension/numeric/affine.hpp
//
// Copyright 2005-2007 Adobe Systems Incorporated
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#ifndef BOOST_GIL_EXTENSION_NUMERIC_AFFINE_HPP
#define BOOST_GIL_EXTENSION_NUMERIC_AFFINE_HPP
#include <boost/gil/point.hpp>
namespace boost { namespace gil {
////////////////////////////////////////////////////////////////////////////////////////
///
/// Simple matrix to do 2D affine transformations. It is actually 3x3 but the last column is [0 0 1]
///
////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
class matrix3x2 {
public:
matrix3x2() : a(1), b(0), c(0), d(1), e(0), f(0) {}
matrix3x2(T A, T B, T C, T D, T E, T F) : a(A),b(B),c(C),d(D),e(E),f(F) {}
matrix3x2(const matrix3x2& mat) : a(mat.a), b(mat.b), c(mat.c), d(mat.d), e(mat.e), f(mat.f) {}
matrix3x2& operator=(const matrix3x2& m) { a=m.a; b=m.b; c=m.c; d=m.d; e=m.e; f=m.f; return *this; }
matrix3x2& operator*=(const matrix3x2& m) { (*this) = (*this)*m; return *this; }
static matrix3x2 get_rotate(T rads) { T c=std::cos(rads); T s=std::sin(rads); return matrix3x2(c,s,-s,c,0,0); }
static matrix3x2 get_translate(point<T> const& t)
{
return matrix3x2(1, 0, 0, 1, t.x, t.y);
}
static matrix3x2 get_translate(T x, T y) { return matrix3x2(1 ,0,0,1 ,x, y ); }
static matrix3x2 get_scale(point<T> const& s)
{
return matrix3x2(s.x, 0, 0, s.y, 0, 0);
}
static matrix3x2 get_scale(T x, T y) { return matrix3x2(x, 0,0,y, 0 ,0 ); }
static matrix3x2 get_scale(T s) { return matrix3x2(s ,0,0,s ,0 ,0 ); }
T a,b,c,d,e,f;
};
template <typename T> BOOST_FORCEINLINE
matrix3x2<T> operator*(const matrix3x2<T>& m1, const matrix3x2<T>& m2) {
return matrix3x2<T>(
m1.a * m2.a + m1.b * m2.c,
m1.a * m2.b + m1.b * m2.d,
m1.c * m2.a + m1.d * m2.c,
m1.c * m2.b + m1.d * m2.d,
m1.e * m2.a + m1.f * m2.c + m2.e,
m1.e * m2.b + m1.f * m2.d + m2.f );
}
template <typename T, typename F>
BOOST_FORCEINLINE
point<F> operator*(point<T> const& p, matrix3x2<F> const& m)
{
return { m.a*p.x + m.c*p.y + m.e, m.b*p.x + m.d*p.y + m.f };
}
////////////////////////////////////////////////////////////////////////////////////////
/// Define affine mapping that transforms the source coordinates by the affine transformation
////////////////////////////////////////////////////////////////////////////////////////
/*
template <typename MapFn>
concept MappingFunctionConcept {
typename mapping_traits<MapFn>::result_type; where PointNDConcept<result_type>;
template <typename Domain> { where PointNDConcept<Domain> }
result_type transform(MapFn&, const Domain& src);
};
*/
template <typename T> struct mapping_traits;
template <typename F>
struct mapping_traits<matrix3x2<F>>
{
using result_type = point<F>;
};
template <typename F, typename F2>
BOOST_FORCEINLINE
point<F> transform(matrix3x2<F> const& mat, point<F2> const& src)
{
return src * mat;
}
/// Returns the inverse of the given affine transformation matrix
///
/// \warning Floating point arithmetic, use Boost.Rational if precision maters
template <typename T>
boost::gil::matrix3x2<T> inverse(boost::gil::matrix3x2<T> m)
{
T const determinant = m.a * m.d - m.b * m.c;
boost::gil::matrix3x2<T> res;
res.a = m.d / determinant;
res.b = -m.b / determinant;
res.c = -m.c / determinant;
res.d = m.a / determinant;
res.e = (m.c * m.f - m.d * m.e) / determinant;
res.f = (m.b * m.e - m.a * m.f) / determinant;
return res;
}
/// \fn gil::matrix3x2 center_rotate
/// \tparam T Data type for source image dimensions
/// \tparam F Data type for angle through which image is to be rotated
/// @param dims dimensions of source image
/// @param rads angle through which image is to be rotated
/// @return A transformation matrix for rotating the source image about its center
/// \brief rotates an image from its center point
/// using consecutive affine transformations.
template<typename T, typename F>
boost::gil::matrix3x2<F> center_rotate(boost::gil::point<T> dims,F rads)
{
const F PI = F(3.141592653589793238);
const F c_theta = std::abs(std::cos(rads));
const F s_theta = std::abs(std::sin(rads));
// Bound checks for angle rads
while(rads + PI < 0)
{
rads = rads + PI;
}
while(rads > PI)
{
rads = rads - PI;
}
// Basic Rotation Matrix
boost::gil::matrix3x2<F> rotate = boost::gil::matrix3x2<F>::get_rotate(rads);
// Find distance for translating the image into view
boost::gil::matrix3x2<F> translation(0,0,0,0,0,0);
if(rads > 0)
{
translation.b = s_theta;
}
else
{
translation.c = s_theta;
}
if(std::abs(rads) > PI/2)
{
translation.a = c_theta;
translation.d = c_theta;
}
// To bring the complete image into view
boost::gil::matrix3x2<F> translate =
boost::gil::matrix3x2<F>::get_translate(-1 * dims * translation);
// To fit inside the source dimensions
boost::gil::matrix3x2<F> scale =
boost::gil::matrix3x2<F>::get_scale(
s_theta * dims.y / dims.x + c_theta ,
s_theta * dims.x / dims.y + c_theta
);
return scale * translate * rotate;
}
}} // namespace boost::gil
#endif