boost/gil/image_processing/threshold.hpp
//
// Copyright 2019 Miral Shah <miralshah2211@gmail.com>
// Copyright 2021 Pranam Lashkari <plashkari628@gmail.com>
//
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
#define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
#include <limits>
#include <array>
#include <type_traits>
#include <cstddef>
#include <algorithm>
#include <vector>
#include <cmath>
#include <boost/assert.hpp>
#include <boost/gil/image.hpp>
#include <boost/gil/image_processing/kernel.hpp>
#include <boost/gil/image_processing/convolve.hpp>
#include <boost/gil/image_processing/numeric.hpp>
namespace boost { namespace gil {
namespace detail {
template
<
typename SourceChannelT,
typename ResultChannelT,
typename SrcView,
typename DstView,
typename Operator
>
void threshold_impl(SrcView const& src_view, DstView const& dst_view, Operator const& threshold_op)
{
gil_function_requires<ImageViewConcept<SrcView>>();
gil_function_requires<MutableImageViewConcept<DstView>>();
static_assert(color_spaces_are_compatible
<
typename color_space_type<SrcView>::type,
typename color_space_type<DstView>::type
>::value, "Source and destination views must have pixels with the same color space");
//iterate over the image checking each pixel value for the threshold
for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
{
typename SrcView::x_iterator src_it = src_view.row_begin(y);
typename DstView::x_iterator dst_it = dst_view.row_begin(y);
for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
{
static_transform(src_it[x], dst_it[x], threshold_op);
}
}
}
} //namespace boost::gil::detail
/// \addtogroup ImageProcessing
/// @{
///
/// \brief Direction of image segmentation.
/// The direction specifies which pixels are considered as corresponding to object
/// and which pixels correspond to background.
enum class threshold_direction
{
regular, ///< Consider values greater than threshold value
inverse ///< Consider values less than or equal to threshold value
};
/// \ingroup ImageProcessing
/// \brief Method of optimal threshold value calculation.
enum class threshold_optimal_value
{
otsu ///< \todo TODO
};
/// \ingroup ImageProcessing
/// \brief TODO
enum class threshold_truncate_mode
{
threshold, ///< \todo TODO
zero ///< \todo TODO
};
enum class threshold_adaptive_method
{
mean,
gaussian
};
/// \ingroup ImageProcessing
/// \brief Applies fixed threshold to each pixel of image view.
/// Performs image binarization by thresholding channel value of each
/// pixel of given image view.
/// \param src_view - TODO
/// \param dst_view - TODO
/// \param threshold_value - TODO
/// \param max_value - TODO
/// \param threshold_direction - if regular, values greater than threshold_value are
/// set to max_value else set to 0; if inverse, values greater than threshold_value are
/// set to 0 else set to max_value.
template <typename SrcView, typename DstView>
void threshold_binary(
SrcView const& src_view,
DstView const& dst_view,
typename channel_type<DstView>::type threshold_value,
typename channel_type<DstView>::type max_value,
threshold_direction direction = threshold_direction::regular
)
{
//deciding output channel type and creating functor
using source_channel_t = typename channel_type<SrcView>::type;
using result_channel_t = typename channel_type<DstView>::type;
if (direction == threshold_direction::regular)
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value, max_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? max_value : 0;
});
}
else
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value, max_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? 0 : max_value;
});
}
}
/// \ingroup ImageProcessing
/// \brief Applies fixed threshold to each pixel of image view.
/// Performs image binarization by thresholding channel value of each
/// pixel of given image view.
/// This variant of threshold_binary automatically deduces maximum value for each channel
/// of pixel based on channel type.
/// If direction is regular, values greater than threshold_value will be set to maximum
/// numeric limit of channel else 0.
/// If direction is inverse, values greater than threshold_value will be set to 0 else maximum
/// numeric limit of channel.
template <typename SrcView, typename DstView>
void threshold_binary(
SrcView const& src_view,
DstView const& dst_view,
typename channel_type<DstView>::type threshold_value,
threshold_direction direction = threshold_direction::regular
)
{
//deciding output channel type and creating functor
using result_channel_t = typename channel_type<DstView>::type;
result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
}
/// \ingroup ImageProcessing
/// \brief Applies truncating threshold to each pixel of image view.
/// Takes an image view and performs truncating threshold operation on each chennel.
/// If mode is threshold and direction is regular:
/// values greater than threshold_value will be set to threshold_value else no change
/// If mode is threshold and direction is inverse:
/// values less than or equal to threshold_value will be set to threshold_value else no change
/// If mode is zero and direction is regular:
/// values less than or equal to threshold_value will be set to 0 else no change
/// If mode is zero and direction is inverse:
/// values more than threshold_value will be set to 0 else no change
template <typename SrcView, typename DstView>
void threshold_truncate(
SrcView const& src_view,
DstView const& dst_view,
typename channel_type<DstView>::type threshold_value,
threshold_truncate_mode mode = threshold_truncate_mode::threshold,
threshold_direction direction = threshold_direction::regular
)
{
//deciding output channel type and creating functor
using source_channel_t = typename channel_type<SrcView>::type;
using result_channel_t = typename channel_type<DstView>::type;
std::function<result_channel_t(source_channel_t)> threshold_logic;
if (mode == threshold_truncate_mode::threshold)
{
if (direction == threshold_direction::regular)
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? threshold_value : px;
});
}
else
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? px : threshold_value;
});
}
}
else
{
if (direction == threshold_direction::regular)
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? px : 0;
});
}
else
{
detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
[threshold_value](source_channel_t px) -> result_channel_t {
return px > threshold_value ? 0 : px;
});
}
}
}
namespace detail{
template <typename SrcView, typename DstView>
void otsu_impl(SrcView const& src_view, DstView const& dst_view, threshold_direction direction)
{
//deciding output channel type and creating functor
using source_channel_t = typename channel_type<SrcView>::type;
std::array<std::size_t, 256> histogram{};
//initial value of min is set to maximum possible value to compare histogram data
//initial value of max is set to minimum possible value to compare histogram data
auto min = (std::numeric_limits<source_channel_t>::max)(),
max = (std::numeric_limits<source_channel_t>::min)();
if (sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
{
//iterate over the image to find the min and max pixel values
for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
{
typename SrcView::x_iterator src_it = src_view.row_begin(y);
for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
{
if (src_it[x] < min) min = src_it[x];
if (src_it[x] > min) min = src_it[x];
}
}
//making histogram
for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
{
typename SrcView::x_iterator src_it = src_view.row_begin(y);
for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
{
histogram[((src_it[x] - min) * 255) / (max - min)]++;
}
}
}
else
{
//making histogram
for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
{
typename SrcView::x_iterator src_it = src_view.row_begin(y);
for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
{
histogram[src_it[x]]++;
}
}
}
//histData = histogram data
//sum = total (background + foreground)
//sumB = sum background
//wB = weight background
//wf = weight foreground
//varMax = tracking the maximum known value of between class variance
//mB = mu background
//mF = mu foreground
//varBeetween = between class variance
//http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
//https://www.ipol.im/pub/art/2016/158/
std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
std::ptrdiff_t sum_total = 0, sum_back = 0;
std::size_t weight_back = 0, weight_fore = 0, threshold = 0;
double var_max = 0, mean_back, mean_fore, var_intra_class;
for (std::size_t t = 0; t < 256; t++)
{
sum_total += t * histogram[t];
}
for (int t = 0; t < 256; t++)
{
weight_back += histogram[t]; // Weight Background
if (weight_back == 0) continue;
weight_fore = total_pixel - weight_back; // Weight Foreground
if (weight_fore == 0) break;
sum_back += t * histogram[t];
mean_back = sum_back / weight_back; // Mean Background
mean_fore = (sum_total - sum_back) / weight_fore; // Mean Foreground
// Calculate Between Class Variance
var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
// Check if new maximum found
if (var_intra_class > var_max) {
var_max = var_intra_class;
threshold = t;
}
}
if (sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
{
threshold_binary(src_view, dst_view, (threshold * (max - min) / 255) + min, direction);
}
else {
threshold_binary(src_view, dst_view, threshold, direction);
}
}
} //namespace detail
template <typename SrcView, typename DstView>
void threshold_optimal
(
SrcView const& src_view,
DstView const& dst_view,
threshold_optimal_value mode = threshold_optimal_value::otsu,
threshold_direction direction = threshold_direction::regular
)
{
if (mode == threshold_optimal_value::otsu)
{
for (std::size_t i = 0; i < src_view.num_channels(); i++)
{
detail::otsu_impl
(nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
}
}
}
namespace detail {
template
<
typename SourceChannelT,
typename ResultChannelT,
typename SrcView,
typename DstView,
typename Operator
>
void adaptive_impl
(
SrcView const& src_view,
SrcView const& convolved_view,
DstView const& dst_view,
Operator const& threshold_op
)
{
//template argument validation
gil_function_requires<ImageViewConcept<SrcView>>();
gil_function_requires<MutableImageViewConcept<DstView>>();
static_assert(color_spaces_are_compatible
<
typename color_space_type<SrcView>::type,
typename color_space_type<DstView>::type
>::value, "Source and destination views must have pixels with the same color space");
//iterate over the image checking each pixel value for the threshold
for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
{
typename SrcView::x_iterator src_it = src_view.row_begin(y);
typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
typename DstView::x_iterator dst_it = dst_view.row_begin(y);
for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
{
static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
}
}
}
} //namespace boost::gil::detail
template <typename SrcView, typename DstView>
void threshold_adaptive
(
SrcView const& src_view,
DstView const& dst_view,
typename channel_type<DstView>::type max_value,
std::size_t kernel_size,
threshold_adaptive_method method = threshold_adaptive_method::mean,
threshold_direction direction = threshold_direction::regular,
typename channel_type<DstView>::type constant = 0
)
{
BOOST_ASSERT_MSG((kernel_size % 2 != 0), "Kernel size must be an odd number");
typedef typename channel_type<SrcView>::type source_channel_t;
typedef typename channel_type<DstView>::type result_channel_t;
image<typename SrcView::value_type> temp_img(src_view.width(), src_view.height());
typename image<typename SrcView::value_type>::view_t temp_view = view(temp_img);
SrcView temp_conv(temp_view);
if (method == threshold_adaptive_method::mean)
{
std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
detail::convolve_1d
<
pixel<float, typename SrcView::value_type::layout_t>
>(src_view, kernel, temp_view);
}
else if (method == threshold_adaptive_method::gaussian)
{
detail::kernel_2d<float> kernel = generate_gaussian_kernel(kernel_size, 1.0);
convolve_2d(src_view, kernel, temp_view);
}
if (direction == threshold_direction::regular)
{
detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
[max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
{ return px > (threshold - constant) ? max_value : 0; });
}
else
{
detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
[max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
{ return px > (threshold - constant) ? 0 : max_value; });
}
}
template <typename SrcView, typename DstView>
void threshold_adaptive
(
SrcView const& src_view,
DstView const& dst_view,
std::size_t kernel_size,
threshold_adaptive_method method = threshold_adaptive_method::mean,
threshold_direction direction = threshold_direction::regular,
int constant = 0
)
{
//deciding output channel type and creating functor
typedef typename channel_type<DstView>::type result_channel_t;
result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
}
/// @}
}} //namespace boost::gil
#endif //BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP