boost/graph/adjacency_matrix.hpp
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Copyright 2006 Trustees of Indiana University
// Authors: Jeremy G. Siek and Douglas Gregor <dgregor@cs.indiana.edu>
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_ADJACENCY_MATRIX_HPP
#define BOOST_ADJACENCY_MATRIX_HPP
#include <boost/config.hpp>
#include <vector>
#include <memory>
#include <iterator>
#include <boost/assert.hpp>
#include <boost/limits.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/graph_selectors.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/graph/adjacency_iterator.hpp>
#include <boost/graph/detail/edge.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/filter_iterator.hpp>
#include <boost/range/irange.hpp>
#include <boost/graph/properties.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/property_map/transform_value_property_map.hpp>
#include <boost/property_map/function_property_map.hpp>
namespace boost
{
namespace detail
{
template < class Directed, class Vertex >
class matrix_edge_desc_impl : public edge_desc_impl< Directed, Vertex >
{
typedef edge_desc_impl< Directed, Vertex > Base;
public:
matrix_edge_desc_impl() {}
matrix_edge_desc_impl(
bool exists, Vertex s, Vertex d, const void* ep = 0)
: Base(s, d, ep), m_exists(exists)
{
}
bool exists() const { return m_exists; }
private:
bool m_exists;
};
struct does_edge_exist
{
template < class Edge > bool operator()(const Edge& e) const
{
return e.exists();
}
};
// Note to self... The int for get_edge_exists and set_edge exist helps
// make these calls unambiguous.
template < typename EdgeProperty >
bool get_edge_exists(
const std::pair< bool, EdgeProperty >& stored_edge, int)
{
return stored_edge.first;
}
template < typename EdgeProperty >
void set_edge_exists(
std::pair< bool, EdgeProperty >& stored_edge, bool flag, int)
{
stored_edge.first = flag;
}
template < typename EdgeProxy >
bool get_edge_exists(const EdgeProxy& edge_proxy, ...)
{
return edge_proxy;
}
template < typename EdgeProxy >
EdgeProxy& set_edge_exists(EdgeProxy& edge_proxy, bool flag, ...)
{
edge_proxy = flag;
return edge_proxy; // just to avoid never used warning
}
// NOTE: These functions collide with the get_property function for
// accessing bundled graph properties. Be excplicit when using them.
template < typename EdgeProperty >
const EdgeProperty& get_edge_property(
const std::pair< bool, EdgeProperty >& stored_edge)
{
return stored_edge.second;
}
template < typename EdgeProperty >
EdgeProperty& get_edge_property(
std::pair< bool, EdgeProperty >& stored_edge)
{
return stored_edge.second;
}
template < typename StoredEdgeProperty, typename EdgeProperty >
inline void set_edge_property(
std::pair< bool, StoredEdgeProperty >& stored_edge,
const EdgeProperty& ep, int)
{
stored_edge.second = ep;
}
inline const no_property& get_edge_property(const char&)
{
static no_property s_prop;
return s_prop;
}
inline no_property& get_edge_property(char&)
{
static no_property s_prop;
return s_prop;
}
template < typename EdgeProxy, typename EdgeProperty >
inline void set_edge_property(EdgeProxy, const EdgeProperty&, ...)
{
}
//=======================================================================
// Directed Out Edge Iterator
template < typename VertexDescriptor, typename MatrixIter,
typename VerticesSizeType, typename EdgeDescriptor >
struct dir_adj_matrix_out_edge_iter
: iterator_adaptor< dir_adj_matrix_out_edge_iter< VertexDescriptor,
MatrixIter, VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
{
typedef iterator_adaptor<
dir_adj_matrix_out_edge_iter< VertexDescriptor, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
super_t;
dir_adj_matrix_out_edge_iter() {}
dir_adj_matrix_out_edge_iter(const MatrixIter& i,
const VertexDescriptor& src, const VerticesSizeType& n)
: super_t(i), m_src(src), m_targ(0), m_n(n)
{
}
void increment()
{
++this->base_reference();
++m_targ;
}
inline EdgeDescriptor dereference() const
{
return EdgeDescriptor(get_edge_exists(*this->base(), 0), m_src,
m_targ, &get_edge_property(*this->base()));
}
VertexDescriptor m_src, m_targ;
VerticesSizeType m_n;
};
//=======================================================================
// Directed In Edge Iterator
template < typename VertexDescriptor, typename MatrixIter,
typename VerticesSizeType, typename EdgeDescriptor >
struct dir_adj_matrix_in_edge_iter
: iterator_adaptor< dir_adj_matrix_in_edge_iter< VertexDescriptor,
MatrixIter, VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
{
typedef iterator_adaptor<
dir_adj_matrix_in_edge_iter< VertexDescriptor, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
super_t;
dir_adj_matrix_in_edge_iter() {}
dir_adj_matrix_in_edge_iter(const MatrixIter& i, const MatrixIter& last,
const VertexDescriptor& tgt, const VerticesSizeType& n)
: super_t(i), m_last(last), m_src(0), m_targ(tgt), m_n(n)
{
}
void increment()
{
if (VerticesSizeType(m_last - this->base_reference()) >= m_n)
{
this->base_reference() += m_n;
++m_src;
}
else
{
this->base_reference() = m_last;
}
}
inline EdgeDescriptor dereference() const
{
return EdgeDescriptor(get_edge_exists(*this->base(), 0), m_src,
m_targ, &get_edge_property(*this->base()));
}
MatrixIter m_last;
VertexDescriptor m_src, m_targ;
VerticesSizeType m_n;
};
//=======================================================================
// Undirected Out Edge Iterator
template < typename VertexDescriptor, typename MatrixIter,
typename VerticesSizeType, typename EdgeDescriptor >
struct undir_adj_matrix_out_edge_iter
: iterator_adaptor< undir_adj_matrix_out_edge_iter< VertexDescriptor,
MatrixIter, VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
{
typedef iterator_adaptor<
undir_adj_matrix_out_edge_iter< VertexDescriptor, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
super_t;
undir_adj_matrix_out_edge_iter() {}
undir_adj_matrix_out_edge_iter(const MatrixIter& i,
const VertexDescriptor& src, const VerticesSizeType& n)
: super_t(i), m_src(src), m_inc(src), m_targ(0), m_n(n)
{
}
void increment()
{
if (m_targ < m_src) // first half
{
++this->base_reference();
}
else if (m_targ < m_n - 1)
{ // second half
++m_inc;
this->base_reference() += m_inc;
}
else
{ // past-the-end
this->base_reference() += m_n - m_src;
}
++m_targ;
}
inline EdgeDescriptor dereference() const
{
return EdgeDescriptor(get_edge_exists(*this->base(), 0), m_src,
m_targ, &get_edge_property(*this->base()));
}
VertexDescriptor m_src, m_inc, m_targ;
VerticesSizeType m_n;
};
//=======================================================================
// Undirected In Edge Iterator
template < typename VertexDescriptor, typename MatrixIter,
typename VerticesSizeType, typename EdgeDescriptor >
struct undir_adj_matrix_in_edge_iter
: iterator_adaptor< undir_adj_matrix_in_edge_iter< VertexDescriptor,
MatrixIter, VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
{
typedef iterator_adaptor<
undir_adj_matrix_in_edge_iter< VertexDescriptor, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
super_t;
undir_adj_matrix_in_edge_iter() {}
undir_adj_matrix_in_edge_iter(const MatrixIter& i,
const VertexDescriptor& src, const VerticesSizeType& n)
: super_t(i), m_src(src), m_inc(src), m_targ(0), m_n(n)
{
}
void increment()
{
if (m_targ < m_src) // first half
{
++this->base_reference();
}
else if (m_targ < m_n - 1)
{ // second half
++m_inc;
this->base_reference() += m_inc;
}
else
{ // past-the-end
this->base_reference() += m_n - m_src;
}
++m_targ;
}
inline EdgeDescriptor dereference() const
{
return EdgeDescriptor(get_edge_exists(*this->base(), 0), m_targ,
m_src, &get_edge_property(*this->base()));
}
VertexDescriptor m_src, m_inc, m_targ;
VerticesSizeType m_n;
};
//=======================================================================
// Edge Iterator
template < typename Directed, typename MatrixIter,
typename VerticesSizeType, typename EdgeDescriptor >
struct adj_matrix_edge_iter
: iterator_adaptor< adj_matrix_edge_iter< Directed, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
{
typedef iterator_adaptor< adj_matrix_edge_iter< Directed, MatrixIter,
VerticesSizeType, EdgeDescriptor >,
MatrixIter, EdgeDescriptor, use_default, EdgeDescriptor,
std::ptrdiff_t >
super_t;
adj_matrix_edge_iter() {}
adj_matrix_edge_iter(const MatrixIter& i, const MatrixIter& start,
const VerticesSizeType& n)
: super_t(i), m_start(start), m_src(0), m_targ(0), m_n(n)
{
}
void increment()
{
increment_dispatch(this->base_reference(), Directed());
}
void increment_dispatch(MatrixIter& i, directedS)
{
++i;
if (m_targ == m_n - 1)
{
m_targ = 0;
++m_src;
}
else
{
++m_targ;
}
}
void increment_dispatch(MatrixIter& i, undirectedS)
{
++i;
if (m_targ == m_src)
{
m_targ = 0;
++m_src;
}
else
{
++m_targ;
}
}
inline EdgeDescriptor dereference() const
{
return EdgeDescriptor(get_edge_exists(*this->base(), 0), m_src,
m_targ, &get_edge_property(*this->base()));
}
MatrixIter m_start;
VerticesSizeType m_src, m_targ, m_n;
};
} // namespace detail
//=========================================================================
// Adjacency Matrix Traits
template < typename Directed = directedS > class adjacency_matrix_traits
{
typedef typename Directed::is_directed_t is_directed;
public:
// The bidirectionalS tag is not allowed with the adjacency_matrix
// graph type. Instead, use directedS, which also provides the
// functionality required for a Bidirectional Graph (in_edges,
// in_degree, etc.).
BOOST_STATIC_ASSERT(!(is_same< Directed, bidirectionalS >::value));
typedef typename mpl::if_< is_directed, bidirectional_tag,
undirected_tag >::type directed_category;
typedef disallow_parallel_edge_tag edge_parallel_category;
typedef std::size_t vertex_descriptor;
typedef detail::matrix_edge_desc_impl< directed_category,
vertex_descriptor >
edge_descriptor;
};
struct adjacency_matrix_class_tag
{
};
struct adj_matrix_traversal_tag : public virtual adjacency_matrix_tag,
public virtual vertex_list_graph_tag,
public virtual incidence_graph_tag,
public virtual adjacency_graph_tag,
public virtual edge_list_graph_tag
{
};
//=========================================================================
// Adjacency Matrix Class
template < typename Directed = directedS, typename VertexProperty = no_property,
typename EdgeProperty = no_property, typename GraphProperty = no_property,
typename Allocator = std::allocator< bool > >
class adjacency_matrix
{
typedef adjacency_matrix self;
typedef adjacency_matrix_traits< Directed > Traits;
public:
// The bidirectionalS tag is not allowed with the adjacency_matrix
// graph type. Instead, use directedS, which also provides the
// functionality required for a Bidirectional Graph (in_edges,
// in_degree, etc.).
BOOST_STATIC_ASSERT(!(is_same< Directed, bidirectionalS >::value));
typedef GraphProperty graph_property_type;
typedef typename lookup_one_property< GraphProperty, graph_bundle_t >::type
graph_bundled;
typedef VertexProperty vertex_property_type;
typedef
typename lookup_one_property< VertexProperty, vertex_bundle_t >::type
vertex_bundled;
typedef EdgeProperty edge_property_type;
typedef typename lookup_one_property< EdgeProperty, edge_bundle_t >::type
edge_bundled;
public: // should be private
typedef
typename mpl::if_< typename has_property< edge_property_type >::type,
std::pair< bool, edge_property_type >, char >::type StoredEdge;
#if defined(BOOST_NO_STD_ALLOCATOR)
typedef std::vector< StoredEdge > Matrix;
#else
#if defined(BOOST_NO_CXX11_ALLOCATOR)
typedef typename Allocator::template rebind< StoredEdge >::other Alloc;
#else
typedef typename std::allocator_traits< Allocator >::template rebind_alloc<
StoredEdge >
Alloc;
#endif
typedef std::vector< StoredEdge, Alloc > Matrix;
#endif
typedef typename Matrix::iterator MatrixIter;
typedef typename Matrix::size_type size_type;
public:
// Graph concept required types
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef adj_matrix_traversal_tag traversal_category;
static vertex_descriptor null_vertex()
{
return (std::numeric_limits< vertex_descriptor >::max)();
}
// private: if friends worked, these would be private
typedef detail::dir_adj_matrix_out_edge_iter< vertex_descriptor, MatrixIter,
size_type, edge_descriptor >
DirOutEdgeIter;
typedef detail::undir_adj_matrix_out_edge_iter< vertex_descriptor,
MatrixIter, size_type, edge_descriptor >
UnDirOutEdgeIter;
typedef typename mpl::if_< typename Directed::is_directed_t, DirOutEdgeIter,
UnDirOutEdgeIter >::type unfiltered_out_edge_iter;
typedef detail::dir_adj_matrix_in_edge_iter< vertex_descriptor, MatrixIter,
size_type, edge_descriptor >
DirInEdgeIter;
typedef detail::undir_adj_matrix_in_edge_iter< vertex_descriptor,
MatrixIter, size_type, edge_descriptor >
UnDirInEdgeIter;
typedef typename mpl::if_< typename Directed::is_directed_t, DirInEdgeIter,
UnDirInEdgeIter >::type unfiltered_in_edge_iter;
typedef detail::adj_matrix_edge_iter< Directed, MatrixIter, size_type,
edge_descriptor >
unfiltered_edge_iter;
public:
// IncidenceGraph concept required types
typedef filter_iterator< detail::does_edge_exist, unfiltered_out_edge_iter >
out_edge_iterator;
typedef size_type degree_size_type;
// BidirectionalGraph required types
typedef filter_iterator< detail::does_edge_exist, unfiltered_in_edge_iter >
in_edge_iterator;
// AdjacencyGraph required types
typedef typename adjacency_iterator_generator< self, vertex_descriptor,
out_edge_iterator >::type adjacency_iterator;
// VertexListGraph required types
typedef size_type vertices_size_type;
typedef integer_range< vertex_descriptor > VertexList;
typedef typename VertexList::iterator vertex_iterator;
// EdgeListGraph required types
typedef size_type edges_size_type;
typedef filter_iterator< detail::does_edge_exist, unfiltered_edge_iter >
edge_iterator;
// PropertyGraph required types
typedef adjacency_matrix_class_tag graph_tag;
// Constructor required by MutableGraph
adjacency_matrix(
vertices_size_type n_vertices, const GraphProperty& p = GraphProperty())
: m_matrix(Directed::is_directed ? (n_vertices * n_vertices)
: (n_vertices * (n_vertices + 1) / 2))
, m_vertex_set(0, n_vertices)
, m_vertex_properties(n_vertices)
, m_num_edges(0)
, m_property(p)
{
}
template < typename EdgeIterator >
adjacency_matrix(EdgeIterator first, EdgeIterator last,
vertices_size_type n_vertices, const GraphProperty& p = GraphProperty())
: m_matrix(Directed::is_directed ? (n_vertices * n_vertices)
: (n_vertices * (n_vertices + 1) / 2))
, m_vertex_set(0, n_vertices)
, m_vertex_properties(n_vertices)
, m_num_edges(0)
, m_property(p)
{
for (; first != last; ++first)
{
add_edge(first->first, first->second, *this);
}
}
template < typename EdgeIterator, typename EdgePropertyIterator >
adjacency_matrix(EdgeIterator first, EdgeIterator last,
EdgePropertyIterator ep_iter, vertices_size_type n_vertices,
const GraphProperty& p = GraphProperty())
: m_matrix(Directed::is_directed ? (n_vertices * n_vertices)
: (n_vertices * (n_vertices + 1) / 2))
, m_vertex_set(0, n_vertices)
, m_vertex_properties(n_vertices)
, m_num_edges(0)
, m_property(p)
{
for (; first != last; ++first, ++ep_iter)
{
add_edge(first->first, first->second, *ep_iter, *this);
}
}
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Directly access a vertex or edge bundle
vertex_bundled& operator[](vertex_descriptor v)
{
return get(vertex_bundle, *this, v);
}
const vertex_bundled& operator[](vertex_descriptor v) const
{
return get(vertex_bundle, *this, v);
}
edge_bundled& operator[](edge_descriptor e)
{
return get(edge_bundle, *this, e);
}
const edge_bundled& operator[](edge_descriptor e) const
{
return get(edge_bundle, *this, e);
}
graph_bundled& operator[](graph_bundle_t) { return get_property(*this); }
const graph_bundled& operator[](graph_bundle_t) const
{
return get_property(*this);
}
#endif
// private: if friends worked, these would be private
typename Matrix::const_reference get_edge(
vertex_descriptor u, vertex_descriptor v) const
{
if (Directed::is_directed)
return m_matrix[u * m_vertex_set.size() + v];
else
{
if (v > u)
std::swap(u, v);
return m_matrix[u * (u + 1) / 2 + v];
}
}
typename Matrix::reference get_edge(
vertex_descriptor u, vertex_descriptor v)
{
if (Directed::is_directed)
return m_matrix[u * m_vertex_set.size() + v];
else
{
if (v > u)
std::swap(u, v);
return m_matrix[u * (u + 1) / 2 + v];
}
}
Matrix m_matrix;
VertexList m_vertex_set;
std::vector< vertex_property_type > m_vertex_properties;
size_type m_num_edges;
graph_property_type m_property;
};
//=========================================================================
// Functions required by the AdjacencyMatrix concept
template < typename D, typename VP, typename EP, typename GP, typename A >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor,
bool >
edge(typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v,
const adjacency_matrix< D, VP, EP, GP, A >& g)
{
bool exists = detail::get_edge_exists(g.get_edge(u, v), 0);
typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor e(
exists, u, v, &detail::get_edge_property(g.get_edge(u, v)));
return std::make_pair(e, exists);
}
//=========================================================================
// Functions required by the IncidenceGraph concept
// O(1)
template < typename VP, typename EP, typename GP, typename A >
std::pair<
typename adjacency_matrix< directedS, VP, EP, GP, A >::out_edge_iterator,
typename adjacency_matrix< directedS, VP, EP, GP, A >::out_edge_iterator >
out_edges(
typename adjacency_matrix< directedS, VP, EP, GP, A >::vertex_descriptor u,
const adjacency_matrix< directedS, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< directedS, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
typename Graph::vertices_size_type offset = u * g.m_vertex_set.size();
typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
typename Graph::MatrixIter l = f + g.m_vertex_set.size();
typename Graph::unfiltered_out_edge_iter first(f, u, g.m_vertex_set.size()),
last(l, u, g.m_vertex_set.size());
detail::does_edge_exist pred;
typedef typename Graph::out_edge_iterator out_edge_iterator;
return std::make_pair(out_edge_iterator(pred, first, last),
out_edge_iterator(pred, last, last));
}
// O(1)
template < typename VP, typename EP, typename GP, typename A >
std::pair<
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::out_edge_iterator,
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::out_edge_iterator >
out_edges(
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::vertex_descriptor
u,
const adjacency_matrix< undirectedS, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< undirectedS, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
typename Graph::vertices_size_type offset = u * (u + 1) / 2;
typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
typename Graph::MatrixIter l = g.m_matrix.end();
typename Graph::unfiltered_out_edge_iter first(f, u, g.m_vertex_set.size()),
last(l, u, g.m_vertex_set.size());
detail::does_edge_exist pred;
typedef typename Graph::out_edge_iterator out_edge_iterator;
return std::make_pair(out_edge_iterator(pred, first, last),
out_edge_iterator(pred, last, last));
}
// O(N)
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::degree_size_type out_degree(
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
const adjacency_matrix< D, VP, EP, GP, A >& g)
{
typename adjacency_matrix< D, VP, EP, GP, A >::degree_size_type n = 0;
typename adjacency_matrix< D, VP, EP, GP, A >::out_edge_iterator f, l;
for (boost::tie(f, l) = out_edges(u, g); f != l; ++f)
++n;
return n;
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Dir, typename Vertex >
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor source(
const detail::matrix_edge_desc_impl< Dir, Vertex >& e,
const adjacency_matrix< D, VP, EP, GP, A >&)
{
return e.m_source;
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Dir, typename Vertex >
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor target(
const detail::matrix_edge_desc_impl< Dir, Vertex >& e,
const adjacency_matrix< D, VP, EP, GP, A >&)
{
return e.m_target;
}
//=========================================================================
// Functions required by the BidirectionalGraph concept
// O(1)
template < typename VP, typename EP, typename GP, typename A >
std::pair<
typename adjacency_matrix< directedS, VP, EP, GP, A >::in_edge_iterator,
typename adjacency_matrix< directedS, VP, EP, GP, A >::in_edge_iterator >
in_edges(
typename adjacency_matrix< directedS, VP, EP, GP, A >::vertex_descriptor u,
const adjacency_matrix< directedS, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< directedS, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
typename Graph::MatrixIter f = g.m_matrix.begin() + u;
typename Graph::MatrixIter l = g.m_matrix.end();
typename Graph::unfiltered_in_edge_iter first(
f, l, u, g.m_vertex_set.size()),
last(l, l, u, g.m_vertex_set.size());
detail::does_edge_exist pred;
typedef typename Graph::in_edge_iterator in_edge_iterator;
return std::make_pair(in_edge_iterator(pred, first, last),
in_edge_iterator(pred, last, last));
}
// O(1)
template < typename VP, typename EP, typename GP, typename A >
std::pair<
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::in_edge_iterator,
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::in_edge_iterator >
in_edges(
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::vertex_descriptor
u,
const adjacency_matrix< undirectedS, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< undirectedS, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
typename Graph::vertices_size_type offset = u * (u + 1) / 2;
typename Graph::MatrixIter f = g.m_matrix.begin() + offset;
typename Graph::MatrixIter l = g.m_matrix.end();
typename Graph::unfiltered_in_edge_iter first(f, u, g.m_vertex_set.size()),
last(l, u, g.m_vertex_set.size());
detail::does_edge_exist pred;
typedef typename Graph::in_edge_iterator in_edge_iterator;
return std::make_pair(in_edge_iterator(pred, first, last),
in_edge_iterator(pred, last, last));
}
// O(N)
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::degree_size_type in_degree(
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
const adjacency_matrix< D, VP, EP, GP, A >& g)
{
typename adjacency_matrix< D, VP, EP, GP, A >::degree_size_type n = 0;
typename adjacency_matrix< D, VP, EP, GP, A >::in_edge_iterator f, l;
for (boost::tie(f, l) = in_edges(u, g); f != l; ++f)
++n;
return n;
}
//=========================================================================
// Functions required by the AdjacencyGraph concept
template < typename D, typename VP, typename EP, typename GP, typename A >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::adjacency_iterator,
typename adjacency_matrix< D, VP, EP, GP, A >::adjacency_iterator >
adjacent_vertices(
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
const adjacency_matrix< D, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< D, VP, EP, GP, A > Graph;
const Graph& cg = static_cast< const Graph& >(g_);
Graph& g = const_cast< Graph& >(cg);
typedef typename Graph::adjacency_iterator adjacency_iterator;
typename Graph::out_edge_iterator first, last;
boost::tie(first, last) = out_edges(u, g);
return std::make_pair(
adjacency_iterator(first, &g), adjacency_iterator(last, &g));
}
//=========================================================================
// Functions required by the VertexListGraph concept
template < typename D, typename VP, typename EP, typename GP, typename A >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::vertex_iterator,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_iterator >
vertices(const adjacency_matrix< D, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< D, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
return std::make_pair(g.m_vertex_set.begin(), g.m_vertex_set.end());
}
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::vertices_size_type num_vertices(
const adjacency_matrix< D, VP, EP, GP, A >& g)
{
return g.m_vertex_set.size();
}
//=========================================================================
// Functions required by the EdgeListGraph concept
template < typename D, typename VP, typename EP, typename GP, typename A >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::edge_iterator,
typename adjacency_matrix< D, VP, EP, GP, A >::edge_iterator >
edges(const adjacency_matrix< D, VP, EP, GP, A >& g_)
{
typedef adjacency_matrix< D, VP, EP, GP, A > Graph;
Graph& g = const_cast< Graph& >(g_);
typename Graph::unfiltered_edge_iter first(
g.m_matrix.begin(), g.m_matrix.begin(), g.m_vertex_set.size()),
last(g.m_matrix.end(), g.m_matrix.begin(), g.m_vertex_set.size());
detail::does_edge_exist pred;
typedef typename Graph::edge_iterator edge_iterator;
return std::make_pair(
edge_iterator(pred, first, last), edge_iterator(pred, last, last));
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::edges_size_type num_edges(
const adjacency_matrix< D, VP, EP, GP, A >& g)
{
return g.m_num_edges;
}
//=========================================================================
// Functions required by the MutableGraph concept
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A,
typename EP2 >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor,
bool >
add_edge(typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v,
const EP2& ep, adjacency_matrix< D, VP, EP, GP, A >& g)
{
typedef typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor
edge_descriptor;
if (detail::get_edge_exists(g.get_edge(u, v), 0) == false)
{
++(g.m_num_edges);
detail::set_edge_property(g.get_edge(u, v), EP(ep), 0);
detail::set_edge_exists(g.get_edge(u, v), true, 0);
return std::make_pair(edge_descriptor(true, u, v,
&detail::get_edge_property(g.get_edge(u, v))),
true);
}
else
return std::make_pair(edge_descriptor(true, u, v,
&detail::get_edge_property(g.get_edge(u, v))),
false);
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A >
std::pair< typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor,
bool >
add_edge(typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v,
adjacency_matrix< D, VP, EP, GP, A >& g)
{
EP ep;
return add_edge(u, v, ep, g);
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A >
void remove_edge(
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor u,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v,
adjacency_matrix< D, VP, EP, GP, A >& g)
{
// Don'remove the edge unless it already exists.
if (detail::get_edge_exists(g.get_edge(u, v), 0))
{
--(g.m_num_edges);
detail::set_edge_exists(g.get_edge(u, v), false, 0);
}
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A >
void remove_edge(
typename adjacency_matrix< D, VP, EP, GP, A >::edge_descriptor e,
adjacency_matrix< D, VP, EP, GP, A >& g)
{
remove_edge(source(e, g), target(e, g), g);
}
template < typename D, typename VP, typename EP, typename GP, typename A >
inline typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor
add_vertex(adjacency_matrix< D, VP, EP, GP, A >& g)
{
// UNDER CONSTRUCTION
BOOST_ASSERT(false);
return *vertices(g).first;
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename VP2 >
inline typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor
add_vertex(const VP2& /*vp*/, adjacency_matrix< D, VP, EP, GP, A >& g)
{
// UNDER CONSTRUCTION
BOOST_ASSERT(false);
return *vertices(g).first;
}
template < typename D, typename VP, typename EP, typename GP, typename A >
inline void remove_vertex(
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor /*u*/,
adjacency_matrix< D, VP, EP, GP, A >& /*g*/)
{
// UNDER CONSTRUCTION
BOOST_ASSERT(false);
}
// O(V)
template < typename VP, typename EP, typename GP, typename A >
void clear_vertex(
typename adjacency_matrix< directedS, VP, EP, GP, A >::vertex_descriptor u,
adjacency_matrix< directedS, VP, EP, GP, A >& g)
{
typename adjacency_matrix< directedS, VP, EP, GP, A >::vertex_iterator vi,
vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
remove_edge(u, *vi, g);
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
remove_edge(*vi, u, g);
}
// O(V)
template < typename VP, typename EP, typename GP, typename A >
void clear_vertex(
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::vertex_descriptor
u,
adjacency_matrix< undirectedS, VP, EP, GP, A >& g)
{
typename adjacency_matrix< undirectedS, VP, EP, GP, A >::vertex_iterator vi,
vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
remove_edge(u, *vi, g);
}
//=========================================================================
// Functions required by the PropertyGraph concept
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Prop, typename Kind >
struct adj_mat_pm_helper;
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Prop >
struct adj_mat_pm_helper< D, VP, EP, GP, A, Prop, vertex_property_tag >
{
typedef typename graph_traits<
adjacency_matrix< D, VP, EP, GP, A > >::vertex_descriptor arg_type;
typedef typed_identity_property_map< arg_type > vi_map_type;
typedef iterator_property_map< typename std::vector< VP >::iterator,
vi_map_type >
all_map_type;
typedef iterator_property_map< typename std::vector< VP >::const_iterator,
vi_map_type >
all_map_const_type;
typedef transform_value_property_map<
detail::lookup_one_property_f< VP, Prop >, all_map_type >
type;
typedef transform_value_property_map<
detail::lookup_one_property_f< const VP, Prop >, all_map_const_type >
const_type;
typedef typename property_traits< type >::reference single_nonconst_type;
typedef typename property_traits< const_type >::reference single_const_type;
static type get_nonconst(adjacency_matrix< D, VP, EP, GP, A >& g, Prop prop)
{
return type(
prop, all_map_type(g.m_vertex_properties.begin(), vi_map_type()));
}
static const_type get_const(
const adjacency_matrix< D, VP, EP, GP, A >& g, Prop prop)
{
return const_type(prop,
all_map_const_type(g.m_vertex_properties.begin(), vi_map_type()));
}
static single_nonconst_type get_nonconst_one(
adjacency_matrix< D, VP, EP, GP, A >& g, Prop prop, arg_type v)
{
return lookup_one_property< VP, Prop >::lookup(
g.m_vertex_properties[v], prop);
}
static single_const_type get_const_one(
const adjacency_matrix< D, VP, EP, GP, A >& g, Prop prop, arg_type v)
{
return lookup_one_property< const VP, Prop >::lookup(
g.m_vertex_properties[v], prop);
}
};
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
struct adj_mat_pm_helper< D, VP, EP, GP, A, Tag, edge_property_tag >
{
typedef typename graph_traits<
adjacency_matrix< D, VP, EP, GP, A > >::edge_descriptor edge_descriptor;
template < typename IsConst > struct lookup_property_from_edge
{
Tag tag;
lookup_property_from_edge(Tag tag) : tag(tag) {}
typedef typename boost::mpl::if_< IsConst, const EP, EP >::type
ep_type_nonref;
typedef ep_type_nonref& ep_type;
typedef typename lookup_one_property< ep_type_nonref, Tag >::type&
result_type;
result_type operator()(edge_descriptor e) const
{
return lookup_one_property< ep_type_nonref, Tag >::lookup(
*static_cast< ep_type_nonref* >(e.get_property()), tag);
}
};
typedef function_property_map<
lookup_property_from_edge< boost::mpl::false_ >,
typename graph_traits<
adjacency_matrix< D, VP, EP, GP, A > >::edge_descriptor >
type;
typedef function_property_map<
lookup_property_from_edge< boost::mpl::true_ >,
typename graph_traits<
adjacency_matrix< D, VP, EP, GP, A > >::edge_descriptor >
const_type;
typedef edge_descriptor arg_type;
typedef
typename lookup_property_from_edge< boost::mpl::false_ >::result_type
single_nonconst_type;
typedef typename lookup_property_from_edge< boost::mpl::true_ >::result_type
single_const_type;
static type get_nonconst(adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag)
{
return type(tag);
}
static const_type get_const(
const adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag)
{
return const_type(tag);
}
static single_nonconst_type get_nonconst_one(
adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag, edge_descriptor e)
{
return lookup_one_property< EP, Tag >::lookup(
*static_cast< EP* >(e.get_property()), tag);
}
static single_const_type get_const_one(
const adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag,
edge_descriptor e)
{
return lookup_one_property< const EP, Tag >::lookup(
*static_cast< const EP* >(e.get_property()), tag);
}
};
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
struct property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >
: adj_mat_pm_helper< D, VP, EP, GP, A, Tag,
typename detail::property_kind_from_graph<
adjacency_matrix< D, VP, EP, GP, A >, Tag >::type >
{
};
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::type get(
Tag tag, adjacency_matrix< D, VP, EP, GP, A >& g)
{
return property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::get_nonconst(g, tag);
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::const_type
get(Tag tag, const adjacency_matrix< D, VP, EP, GP, A >& g)
{
return property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::get_const(
g, tag);
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::single_nonconst_type
get(Tag tag, adjacency_matrix< D, VP, EP, GP, A >& g,
typename property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::arg_type
a)
{
return property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::get_nonconst_one(g, tag, a);
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::single_const_type
get(Tag tag, const adjacency_matrix< D, VP, EP, GP, A >& g,
typename property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::arg_type
a)
{
return property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::get_const_one(g, tag, a);
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
void put(Tag tag, adjacency_matrix< D, VP, EP, GP, A >& g,
typename property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::arg_type
a,
typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::single_const_type val)
{
property_map< adjacency_matrix< D, VP, EP, GP, A >, Tag >::get_nonconst_one(
g, tag, a)
= val;
}
// O(1)
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag, typename Value >
inline void set_property(
adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag, const Value& value)
{
get_property_value(g.m_property, tag) = value;
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
inline
typename graph_property< adjacency_matrix< D, VP, EP, GP, A >, Tag >::type&
get_property(adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag)
{
return get_property_value(g.m_property, tag);
}
template < typename D, typename VP, typename EP, typename GP, typename A,
typename Tag >
inline const typename graph_property< adjacency_matrix< D, VP, EP, GP, A >,
Tag >::type&
get_property(const adjacency_matrix< D, VP, EP, GP, A >& g, Tag tag)
{
return get_property_value(g.m_property, tag);
}
//=========================================================================
// Vertex Property Map
template < typename D, typename VP, typename EP, typename GP, typename A >
struct property_map< adjacency_matrix< D, VP, EP, GP, A >, vertex_index_t >
{
typedef
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor Vertex;
typedef typed_identity_property_map< Vertex > type;
typedef type const_type;
};
template < typename D, typename VP, typename EP, typename GP, typename A >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
vertex_index_t >::const_type
get(vertex_index_t, adjacency_matrix< D, VP, EP, GP, A >&)
{
return typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
vertex_index_t >::const_type();
}
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor get(
vertex_index_t, adjacency_matrix< D, VP, EP, GP, A >&,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v)
{
return v;
}
template < typename D, typename VP, typename EP, typename GP, typename A >
typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
vertex_index_t >::const_type
get(vertex_index_t, const adjacency_matrix< D, VP, EP, GP, A >&)
{
return typename property_map< adjacency_matrix< D, VP, EP, GP, A >,
vertex_index_t >::const_type();
}
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor get(
vertex_index_t, const adjacency_matrix< D, VP, EP, GP, A >&,
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor v)
{
return v;
}
//=========================================================================
// Other Functions
template < typename D, typename VP, typename EP, typename GP, typename A >
typename adjacency_matrix< D, VP, EP, GP, A >::vertex_descriptor vertex(
typename adjacency_matrix< D, VP, EP, GP, A >::vertices_size_type n,
const adjacency_matrix< D, VP, EP, GP, A >&)
{
return n;
}
template < typename D, typename VP, typename EP, typename GP, typename A >
struct graph_mutability_traits< adjacency_matrix< D, VP, EP, GP, A > >
{
typedef mutable_edge_property_graph_tag category;
};
} // namespace boost
#endif // BOOST_ADJACENCY_MATRIX_HPP