boost/graph/fruchterman_reingold.hpp
// Copyright 2004, 2005 The Trustees of Indiana University.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP
#define BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/topology.hpp> // For topology concepts
#include <boost/graph/detail/mpi_include.hpp>
#include <vector>
#include <list>
#include <algorithm> // for std::min and std::max
#include <numeric> // for std::accumulate
#include <cmath> // for std::sqrt and std::fabs
#include <functional>
namespace boost
{
struct square_distance_attractive_force
{
template < typename Graph, typename T >
T operator()(typename graph_traits< Graph >::edge_descriptor, T k, T d,
const Graph&) const
{
return d * d / k;
}
};
struct square_distance_repulsive_force
{
template < typename Graph, typename T >
T operator()(typename graph_traits< Graph >::vertex_descriptor,
typename graph_traits< Graph >::vertex_descriptor, T k, T d,
const Graph&) const
{
return k * k / d;
}
};
template < typename T > struct linear_cooling
{
typedef T result_type;
linear_cooling(std::size_t iterations)
: temp(T(iterations) / T(10)), step(0.1)
{
}
linear_cooling(std::size_t iterations, T temp)
: temp(temp), step(temp / T(iterations))
{
}
T operator()()
{
T old_temp = temp;
temp -= step;
if (temp < T(0))
temp = T(0);
return old_temp;
}
private:
T temp;
T step;
};
struct all_force_pairs
{
template < typename Graph, typename ApplyForce >
void operator()(const Graph& g, ApplyForce apply_force)
{
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator;
vertex_iterator v, end;
for (boost::tie(v, end) = vertices(g); v != end; ++v)
{
vertex_iterator u = v;
for (++u; u != end; ++u)
{
apply_force(*u, *v);
apply_force(*v, *u);
}
}
}
};
template < typename Topology, typename PositionMap > struct grid_force_pairs
{
typedef typename property_traits< PositionMap >::value_type Point;
BOOST_STATIC_ASSERT(Point::dimensions == 2);
typedef typename Topology::point_difference_type point_difference_type;
template < typename Graph >
explicit grid_force_pairs(
const Topology& topology, PositionMap position, const Graph& g)
: topology(topology), position(position)
{
two_k = 2. * this->topology.volume(this->topology.extent())
/ std::sqrt((double)num_vertices(g));
}
template < typename Graph, typename ApplyForce >
void operator()(const Graph& g, ApplyForce apply_force)
{
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator;
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor;
typedef std::list< vertex_descriptor > bucket_t;
typedef std::vector< bucket_t > buckets_t;
std::size_t columns = std::size_t(topology.extent()[0] / two_k + 1.);
std::size_t rows = std::size_t(topology.extent()[1] / two_k + 1.);
buckets_t buckets(rows * columns);
vertex_iterator v, v_end;
for (boost::tie(v, v_end) = vertices(g); v != v_end; ++v)
{
std::size_t column = std::size_t(
(get(position, *v)[0] + topology.extent()[0] / 2) / two_k);
std::size_t row = std::size_t(
(get(position, *v)[1] + topology.extent()[1] / 2) / two_k);
if (column >= columns)
column = columns - 1;
if (row >= rows)
row = rows - 1;
buckets[row * columns + column].push_back(*v);
}
for (std::size_t row = 0; row < rows; ++row)
for (std::size_t column = 0; column < columns; ++column)
{
bucket_t& bucket = buckets[row * columns + column];
typedef typename bucket_t::iterator bucket_iterator;
for (bucket_iterator u = bucket.begin(); u != bucket.end(); ++u)
{
// Repulse vertices in this bucket
bucket_iterator v = u;
for (++v; v != bucket.end(); ++v)
{
apply_force(*u, *v);
apply_force(*v, *u);
}
std::size_t adj_start_row = row == 0 ? 0 : row - 1;
std::size_t adj_end_row = row == rows - 1 ? row : row + 1;
std::size_t adj_start_column = column == 0 ? 0 : column - 1;
std::size_t adj_end_column
= column == columns - 1 ? column : column + 1;
for (std::size_t other_row = adj_start_row;
other_row <= adj_end_row; ++other_row)
for (std::size_t other_column = adj_start_column;
other_column <= adj_end_column; ++other_column)
if (other_row != row || other_column != column)
{
// Repulse vertices in this bucket
bucket_t& other_bucket
= buckets[other_row * columns
+ other_column];
for (v = other_bucket.begin();
v != other_bucket.end(); ++v)
{
double dist = topology.distance(
get(position, *u), get(position, *v));
if (dist < two_k)
apply_force(*u, *v);
}
}
}
}
}
private:
const Topology& topology;
PositionMap position;
double two_k;
};
template < typename PositionMap, typename Topology, typename Graph >
inline grid_force_pairs< Topology, PositionMap > make_grid_force_pairs(
const Topology& topology, const PositionMap& position, const Graph& g)
{
return grid_force_pairs< Topology, PositionMap >(topology, position, g);
}
template < typename Graph, typename PositionMap, typename Topology >
void scale_graph(const Graph& g, PositionMap position, const Topology& topology,
typename Topology::point_type upper_left,
typename Topology::point_type lower_right)
{
if (num_vertices(g) == 0)
return;
typedef typename Topology::point_type Point;
typedef typename Topology::point_difference_type point_difference_type;
// Find min/max ranges
Point min_point = get(position, *vertices(g).first), max_point = min_point;
BGL_FORALL_VERTICES_T(v, g, Graph)
{
min_point = topology.pointwise_min(min_point, get(position, v));
max_point = topology.pointwise_max(max_point, get(position, v));
}
Point old_origin = topology.move_position_toward(min_point, 0.5, max_point);
Point new_origin
= topology.move_position_toward(upper_left, 0.5, lower_right);
point_difference_type old_size = topology.difference(max_point, min_point);
point_difference_type new_size
= topology.difference(lower_right, upper_left);
// Scale to bounding box provided
BGL_FORALL_VERTICES_T(v, g, Graph)
{
point_difference_type relative_loc
= topology.difference(get(position, v), old_origin);
relative_loc = (relative_loc / old_size) * new_size;
put(position, v, topology.adjust(new_origin, relative_loc));
}
}
namespace detail
{
template < typename Topology, typename PropMap, typename Vertex >
void maybe_jitter_point(const Topology& topology, const PropMap& pm,
Vertex v, const typename Topology::point_type& p2)
{
double too_close = topology.norm(topology.extent()) / 10000.;
if (topology.distance(get(pm, v), p2) < too_close)
{
put(pm, v,
topology.move_position_toward(
get(pm, v), 1. / 200, topology.random_point()));
}
}
template < typename Topology, typename PositionMap,
typename DisplacementMap, typename RepulsiveForce, typename Graph >
struct fr_apply_force
{
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor;
typedef typename Topology::point_type Point;
typedef typename Topology::point_difference_type PointDiff;
fr_apply_force(const Topology& topology, const PositionMap& position,
const DisplacementMap& displacement, RepulsiveForce repulsive_force,
double k, const Graph& g)
: topology(topology)
, position(position)
, displacement(displacement)
, repulsive_force(repulsive_force)
, k(k)
, g(g)
{
}
void operator()(vertex_descriptor u, vertex_descriptor v)
{
if (u != v)
{
// When the vertices land on top of each other, move the
// first vertex away from the boundaries.
maybe_jitter_point(topology, position, u, get(position, v));
double dist
= topology.distance(get(position, u), get(position, v));
typename Topology::point_difference_type dispv
= get(displacement, v);
if (dist == 0.)
{
for (std::size_t i = 0; i < Point::dimensions; ++i)
{
dispv[i] += 0.01;
}
}
else
{
double fr = repulsive_force(u, v, k, dist, g);
dispv += (fr / dist)
* topology.difference(
get(position, v), get(position, u));
}
put(displacement, v, dispv);
}
}
private:
const Topology& topology;
PositionMap position;
DisplacementMap displacement;
RepulsiveForce repulsive_force;
double k;
const Graph& g;
};
} // end namespace detail
template < typename Topology, typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce, typename ForcePairs,
typename Cooling, typename DisplacementMap >
void fruchterman_reingold_force_directed_layout(const Graph& g,
PositionMap position, const Topology& topology,
AttractiveForce attractive_force, RepulsiveForce repulsive_force,
ForcePairs force_pairs, Cooling cool, DisplacementMap displacement)
{
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator;
typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor;
typedef typename graph_traits< Graph >::edge_iterator edge_iterator;
double volume = topology.volume(topology.extent());
// assume positions are initialized randomly
double k = pow(volume / num_vertices(g),
1. / (double)(Topology::point_difference_type::dimensions));
detail::fr_apply_force< Topology, PositionMap, DisplacementMap,
RepulsiveForce, Graph >
apply_force(topology, position, displacement, repulsive_force, k, g);
do
{
// Calculate repulsive forces
vertex_iterator v, v_end;
for (boost::tie(v, v_end) = vertices(g); v != v_end; ++v)
put(displacement, *v, typename Topology::point_difference_type());
force_pairs(g, apply_force);
// Calculate attractive forces
edge_iterator e, e_end;
for (boost::tie(e, e_end) = edges(g); e != e_end; ++e)
{
vertex_descriptor v = source(*e, g);
vertex_descriptor u = target(*e, g);
// When the vertices land on top of each other, move the
// first vertex away from the boundaries.
::boost::detail::maybe_jitter_point(
topology, position, u, get(position, v));
typename Topology::point_difference_type delta
= topology.difference(get(position, v), get(position, u));
double dist = topology.distance(get(position, u), get(position, v));
double fa = attractive_force(*e, k, dist, g);
put(displacement, v, get(displacement, v) - (fa / dist) * delta);
put(displacement, u, get(displacement, u) + (fa / dist) * delta);
}
if (double temp = cool())
{
// Update positions
BGL_FORALL_VERTICES_T(v, g, Graph)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
double disp_size = topology.norm(get(displacement, v));
put(position, v,
topology.adjust(get(position, v),
get(displacement, v)
* (min BOOST_PREVENT_MACRO_SUBSTITUTION(
disp_size, temp)
/ disp_size)));
put(position, v, topology.bound(get(position, v)));
}
}
else
{
break;
}
} while (true);
}
namespace detail
{
template < typename DisplacementMap > struct fr_force_directed_layout
{
template < typename Topology, typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename Param, typename Tag,
typename Rest >
static void run(const Graph& g, PositionMap position,
const Topology& topology, AttractiveForce attractive_force,
RepulsiveForce repulsive_force, ForcePairs force_pairs,
Cooling cool, DisplacementMap displacement,
const bgl_named_params< Param, Tag, Rest >&)
{
fruchterman_reingold_force_directed_layout(g, position, topology,
attractive_force, repulsive_force, force_pairs, cool,
displacement);
}
};
template <> struct fr_force_directed_layout< param_not_found >
{
template < typename Topology, typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename Param, typename Tag,
typename Rest >
static void run(const Graph& g, PositionMap position,
const Topology& topology, AttractiveForce attractive_force,
RepulsiveForce repulsive_force, ForcePairs force_pairs,
Cooling cool, param_not_found,
const bgl_named_params< Param, Tag, Rest >& params)
{
typedef typename Topology::point_difference_type PointDiff;
std::vector< PointDiff > displacements(num_vertices(g));
fruchterman_reingold_force_directed_layout(g, position, topology,
attractive_force, repulsive_force, force_pairs, cool,
make_iterator_property_map(displacements.begin(),
choose_const_pmap(
get_param(params, vertex_index), g, vertex_index),
PointDiff()));
}
};
} // end namespace detail
template < typename Topology, typename Graph, typename PositionMap,
typename Param, typename Tag, typename Rest >
void fruchterman_reingold_force_directed_layout(const Graph& g,
PositionMap position, const Topology& topology,
const bgl_named_params< Param, Tag, Rest >& params)
{
typedef typename get_param_type< vertex_displacement_t,
bgl_named_params< Param, Tag, Rest > >::type D;
detail::fr_force_directed_layout< D >::run(g, position, topology,
choose_param(get_param(params, attractive_force_t()),
square_distance_attractive_force()),
choose_param(get_param(params, repulsive_force_t()),
square_distance_repulsive_force()),
choose_param(get_param(params, force_pairs_t()),
make_grid_force_pairs(topology, position, g)),
choose_param(
get_param(params, cooling_t()), linear_cooling< double >(100)),
get_param(params, vertex_displacement_t()), params);
}
template < typename Topology, typename Graph, typename PositionMap >
void fruchterman_reingold_force_directed_layout(
const Graph& g, PositionMap position, const Topology& topology)
{
fruchterman_reingold_force_directed_layout(g, position, topology,
attractive_force(square_distance_attractive_force()));
}
} // end namespace boost
#include BOOST_GRAPH_MPI_INCLUDE(<boost/graph/distributed/fruchterman_reingold.hpp>)
#endif // BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP