boost/graph/plod_generator.hpp
// Copyright 2004-2006 The Trustees of Indiana University.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_PLOD_GENERATOR_HPP
#define BOOST_GRAPH_PLOD_GENERATOR_HPP
#include <iterator>
#include <utility>
#include <boost/random/uniform_int.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/graph/graph_traits.hpp>
#include <vector>
#include <map>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/mpl/if.hpp>
namespace boost
{
template < typename RandomGenerator > class out_directed_plod_iterator
{
public:
typedef std::forward_iterator_tag iterator_category;
typedef std::pair< std::size_t, std::size_t > value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef std::ptrdiff_t difference_type;
out_directed_plod_iterator() : gen(0), at_end(true) {}
out_directed_plod_iterator(RandomGenerator& gen, std::size_t n,
double alpha, double beta, bool allow_self_loops)
: gen(&gen)
, n(n)
, alpha(alpha)
, beta(beta)
, allow_self_loops(allow_self_loops)
, at_end(false)
, degree(0)
, current(0, 0)
{
using std::pow;
uniform_int< std::size_t > x(0, n - 1);
std::size_t xv = x(gen);
degree = (xv == 0 ? 0 : std::size_t(beta * pow(xv, -alpha)));
}
reference operator*() const { return current; }
pointer operator->() const { return ¤t; }
out_directed_plod_iterator& operator++()
{
using std::pow;
uniform_int< std::size_t > x(0, n - 1);
// Continue stepping through source nodes until the
// (out)degree is > 0
while (degree == 0)
{
// Step to the next source node. If we've gone past the
// number of nodes we're responsible for, we're done.
if (++current.first >= n)
{
at_end = true;
return *this;
}
std::size_t xv = x(*gen);
degree = (xv == 0 ? 0 : std::size_t(beta * pow(xv, -alpha)));
}
do
{
current.second = x(*gen);
} while (current.first == current.second && !allow_self_loops);
--degree;
return *this;
}
out_directed_plod_iterator operator++(int)
{
out_directed_plod_iterator temp(*this);
++(*this);
return temp;
}
bool operator==(const out_directed_plod_iterator& other) const
{
return at_end == other.at_end;
}
bool operator!=(const out_directed_plod_iterator& other) const
{
return !(*this == other);
}
private:
RandomGenerator* gen;
std::size_t n;
double alpha;
double beta;
bool allow_self_loops;
bool at_end;
std::size_t degree;
value_type current;
};
template < typename RandomGenerator > class undirected_plod_iterator
{
typedef std::vector< std::pair< std::size_t, std::size_t > > out_degrees_t;
public:
typedef std::input_iterator_tag iterator_category;
typedef std::pair< std::size_t, std::size_t > value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef std::ptrdiff_t difference_type;
undirected_plod_iterator()
: gen(0), out_degrees(), degrees_left(0), allow_self_loops(false)
{
}
undirected_plod_iterator(RandomGenerator& gen, std::size_t n, double alpha,
double beta, bool allow_self_loops = false)
: gen(&gen)
, n(n)
, out_degrees(new out_degrees_t)
, degrees_left(0)
, allow_self_loops(allow_self_loops)
{
using std::pow;
uniform_int< std::size_t > x(0, n - 1);
for (std::size_t i = 0; i != n; ++i)
{
std::size_t xv = x(gen);
std::size_t degree
= (xv == 0 ? 0 : std::size_t(beta * pow(xv, -alpha)));
if (degree == 0)
degree = 1;
else if (degree >= n)
degree = n - 1;
out_degrees->push_back(std::make_pair(i, degree));
degrees_left += degree;
}
next();
}
reference operator*() const { return current; }
pointer operator->() const { return ¤t; }
undirected_plod_iterator& operator++()
{
next();
return *this;
}
undirected_plod_iterator operator++(int)
{
undirected_plod_iterator temp(*this);
++(*this);
return temp;
}
bool operator==(const undirected_plod_iterator& other) const
{
return degrees_left == other.degrees_left;
}
bool operator!=(const undirected_plod_iterator& other) const
{
return !(*this == other);
}
private:
void next()
{
std::size_t source, target;
while (true)
{
/* We may get to the point where we can't actually find any
new edges, so we just add some random edge and set the
degrees left = 0 to signal termination. */
if (out_degrees->size() < 2)
{
uniform_int< std::size_t > x(0, n - 1);
current.first = x(*gen);
do
{
current.second = x(*gen);
} while (current.first == current.second && !allow_self_loops);
degrees_left = 0;
out_degrees->clear();
return;
}
uniform_int< std::size_t > x(0, out_degrees->size() - 1);
// Select source vertex
source = x(*gen);
if ((*out_degrees)[source].second == 0)
{
(*out_degrees)[source] = out_degrees->back();
out_degrees->pop_back();
continue;
}
// Select target vertex
target = x(*gen);
if ((*out_degrees)[target].second == 0)
{
(*out_degrees)[target] = out_degrees->back();
out_degrees->pop_back();
continue;
}
else if (source != target
|| (allow_self_loops && (*out_degrees)[source].second > 2))
{
break;
}
}
// Update degree counts
--(*out_degrees)[source].second;
--degrees_left;
--(*out_degrees)[target].second;
--degrees_left;
current.first = (*out_degrees)[source].first;
current.second = (*out_degrees)[target].first;
}
RandomGenerator* gen;
std::size_t n;
shared_ptr< out_degrees_t > out_degrees;
std::size_t degrees_left;
bool allow_self_loops;
value_type current;
};
template < typename RandomGenerator, typename Graph >
class plod_iterator
: public mpl::if_<
is_convertible< typename graph_traits< Graph >::directed_category,
directed_tag >,
out_directed_plod_iterator< RandomGenerator >,
undirected_plod_iterator< RandomGenerator > >::type
{
typedef typename mpl::if_<
is_convertible< typename graph_traits< Graph >::directed_category,
directed_tag >,
out_directed_plod_iterator< RandomGenerator >,
undirected_plod_iterator< RandomGenerator > >::type inherited;
public:
plod_iterator() : inherited() {}
plod_iterator(RandomGenerator& gen, std::size_t n, double alpha,
double beta, bool allow_self_loops = false)
: inherited(gen, n, alpha, beta, allow_self_loops)
{
}
};
} // end namespace boost
#endif // BOOST_GRAPH_PLOD_GENERATOR_HPP