boost/intrusive/hashtable.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2022
// (C) Copyright 2022 Joaquin M Lopez Munoz.
// (C) Copyright 2022 Christian Mazakas
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
// fastmod_buckets option is implemented reusing parts of Joaquin M. Lopez
// Munoz's "fxa_unordered" library (proof of concept of closed- and
// open-addressing unordered associative containers), released under
// Boost Software License:
//
// https://github.com/joaquintides/fxa_unordered/
//
// On cases and systems that can't take advantage of Daniel Lemire's
// "fastmod" (https://github.com/lemire/fastmod) approach,
// precomputed divisions are used.
//
// As always, thanks Joaquin for your great work!
#ifndef BOOST_INTRUSIVE_HASHTABLE_HPP
#define BOOST_INTRUSIVE_HASHTABLE_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/move/detail/meta_utils_core.hpp>
//General intrusive utilities
#include <boost/intrusive/detail/hashtable_node.hpp>
#include <boost/intrusive/detail/transform_iterator.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
#include <boost/intrusive/detail/is_stateful_value_traits.hpp>
#include <boost/intrusive/detail/node_to_value.hpp>
#include <boost/intrusive/detail/exception_disposer.hpp>
#include <boost/intrusive/detail/node_cloner_disposer.hpp>
#include <boost/intrusive/detail/simple_disposers.hpp>
#include <boost/intrusive/detail/size_holder.hpp>
#include <boost/intrusive/detail/iterator.hpp>
#include <boost/intrusive/detail/get_value_traits.hpp>
#include <boost/intrusive/detail/algorithm.hpp>
#include <boost/intrusive/detail/value_functors.hpp>
//Implementation utilities
#include <boost/intrusive/unordered_set_hook.hpp>
#include <boost/intrusive/detail/slist_iterator.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/detail/mpl.hpp>
#include <boost/intrusive/circular_slist_algorithms.hpp>
#include <boost/intrusive/linear_slist_algorithms.hpp>
//boost
#include <boost/intrusive/detail/assert.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/algo/detail/search.hpp>
//std C++
#include <boost/intrusive/detail/minimal_pair_header.hpp> //std::pair
#include <cstddef> //std::size_t
#include <boost/cstdint.hpp> //std::uint64_t
#include "detail/hash.hpp"
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace boost {
namespace intrusive {
#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
/// @cond
//We only support LLP64(Win64) or LP64(most Unix) data models
#ifdef _WIN64 //In 64 bit windows sizeof(size_t) == sizeof(unsigned long long)
# define BOOST_INTRUSIVE_SIZE_C(NUMBER) NUMBER##ULL
# define BOOST_INTRUSIVE_64_BIT_SIZE_T 1
#else //In 32 bit windows and 32/64 bit unixes sizeof(size_t) == sizeof(unsigned long)
# define BOOST_INTRUSIVE_SIZE_C(NUMBER) NUMBER##UL
# define BOOST_INTRUSIVE_64_BIT_SIZE_T (((((ULONG_MAX>>16)>>16)>>16)>>15) != 0)
#endif
template<int Dummy = 0>
struct prime_list_holder
{
private:
template <class SizeType> // sizeof(SizeType) < sizeof(std::size_t)
static inline SizeType truncate_size_type(std::size_t n, detail::true_)
{ return n < std::size_t(SizeType(-1)) ? static_cast<SizeType>(n) : SizeType(-1); }
template <class SizeType> // sizeof(SizeType) == sizeof(std::size_t)
static inline SizeType truncate_size_type(std::size_t n, detail::false_)
{ return static_cast<SizeType>(n); }
static const std::size_t prime_list[];
static const std::size_t prime_list_size;
static const std::size_t *suggested_lower_bucket_count_ptr(std::size_t n)
{
const std::size_t *primes = &prime_list[0];
const std::size_t *primes_end = primes + prime_list_size;
std::size_t const* bound =
boost::movelib::lower_bound(primes, primes_end, n, value_less<std::size_t>());
bound -= std::size_t(bound == primes_end);
return bound;
}
static const std::size_t *suggested_upper_bucket_count_ptr(std::size_t n)
{
const std::size_t *primes = &prime_list[0];
const std::size_t *primes_end = primes + prime_list_size;
std::size_t const* bound =
boost::movelib::upper_bound(primes, primes_end, n, value_less<std::size_t>());
bound -= std::size_t(bound == primes_end);
return bound;
}
static std::size_t suggested_lower_bucket_count_impl(std::size_t n)
{ return *suggested_lower_bucket_count_ptr(n); }
static std::size_t suggested_upper_bucket_count_impl(std::size_t n)
{ return *suggested_upper_bucket_count_ptr(n); }
public:
template <class SizeType>
static inline SizeType suggested_upper_bucket_count(SizeType n)
{
std::size_t const c = suggested_upper_bucket_count_impl(static_cast<std::size_t>(n));
return truncate_size_type<SizeType>(c, detail::bool_<(sizeof(SizeType) < sizeof(std::size_t))>());
}
template <class SizeType>
static inline SizeType suggested_lower_bucket_count(SizeType n)
{
std::size_t const c = suggested_lower_bucket_count_impl(static_cast<std::size_t>(n));
return truncate_size_type<SizeType>(c, detail::bool_<(sizeof(SizeType) < sizeof(std::size_t))>());
}
static inline std::size_t suggested_lower_bucket_count_idx(std::size_t n)
{ return static_cast<std::size_t>(suggested_lower_bucket_count_ptr(n) - &prime_list[0]); }
static inline std::size_t suggested_upper_bucket_count_idx(std::size_t n)
{ return static_cast<std::size_t>(suggested_upper_bucket_count_ptr(n) - &prime_list[0]); }
static inline std::size_t size_from_index(std::size_t n)
{ return prime_list[std::ptrdiff_t(n)]; }
template<std::size_t SizeIndex>
inline static std::size_t modfunc(std::size_t hash) { return hash % SizeIndex; }
static std::size_t(*const positions[])(std::size_t);
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
static const uint64_t inv_sizes32[];
static const std::size_t inv_sizes32_size;
#endif
inline static std::size_t lower_size_index(std::size_t n)
{ return prime_list_holder<>::suggested_lower_bucket_count_idx(n); }
inline static std::size_t upper_size_index(std::size_t n)
{ return prime_list_holder<>::suggested_upper_bucket_count_idx(n); }
inline static std::size_t size(std::size_t size_index)
{ return prime_list_holder<>::size_from_index(size_index); }
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
// https://github.com/lemire/fastmod
inline static uint64_t mul128_u32(uint64_t lowbits, uint32_t d)
{
#if defined(_MSC_VER)
return __umulh(lowbits, d);
#elif defined(BOOST_HAS_INT128)
return static_cast<uint64_t>((uint128_type(lowbits) * d) >> 64);
#else
uint64_t r1 = (lowbits & UINT32_MAX) * d;
uint64_t r2 = (lowbits >> 32) * d;
r2 += r1 >> 32;
return r2 >> 32;
#endif
}
inline static uint32_t fastmod_u32(uint32_t a, uint64_t M, uint32_t d)
{
uint64_t lowbits = M * a;
return (uint32_t)(mul128_u32(lowbits, d));
}
#endif // BOOST_INTRUSIVE_64_BIT_SIZE_T
inline static std::size_t position(std::size_t hash,std::size_t size_index)
{
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
BOOST_CONSTEXPR_OR_CONST std::size_t sizes_under_32bit = sizeof(inv_sizes32)/sizeof(inv_sizes32[0]);
if(BOOST_LIKELY(size_index < sizes_under_32bit)){
return fastmod_u32( uint32_t(hash)+uint32_t(hash>>32)
, inv_sizes32[size_index]
, uint32_t(prime_list[size_index]) );
}
else{
return positions[size_index](hash);
}
#else
return positions[size_index](hash);
#endif // BOOST_INTRUSIVE_64_BIT_SIZE_T
}
};
template<int Dummy>
std::size_t(* const prime_list_holder<Dummy>::positions[])(std::size_t) =
{
modfunc<BOOST_INTRUSIVE_SIZE_C(3)>, modfunc<BOOST_INTRUSIVE_SIZE_C(7)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(11)>, modfunc<BOOST_INTRUSIVE_SIZE_C(17)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(29)>, modfunc<BOOST_INTRUSIVE_SIZE_C(53)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(97)>, modfunc<BOOST_INTRUSIVE_SIZE_C(193)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(389)>, modfunc<BOOST_INTRUSIVE_SIZE_C(769)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1543)>, modfunc<BOOST_INTRUSIVE_SIZE_C(3079)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(6151)>, modfunc<BOOST_INTRUSIVE_SIZE_C(12289)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(24593)>, modfunc<BOOST_INTRUSIVE_SIZE_C(49157)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(98317)>, modfunc<BOOST_INTRUSIVE_SIZE_C(196613)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(393241)>, modfunc<BOOST_INTRUSIVE_SIZE_C(786433)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1572869)>, modfunc<BOOST_INTRUSIVE_SIZE_C(3145739)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(6291469)>, modfunc<BOOST_INTRUSIVE_SIZE_C(12582917)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(25165843)>, modfunc<BOOST_INTRUSIVE_SIZE_C(50331653)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(100663319)>, modfunc<BOOST_INTRUSIVE_SIZE_C(201326611)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(402653189)>, modfunc<BOOST_INTRUSIVE_SIZE_C(805306457)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1610612741)>, //0-30 indexes
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
//Taken from Boost.MultiIndex code, thanks to Joaquin M. Lopez Munoz.
modfunc<BOOST_INTRUSIVE_SIZE_C(3221225473)>, //<- 32 bit values stop here (index 31)
modfunc<BOOST_INTRUSIVE_SIZE_C(6442450939)>, modfunc<BOOST_INTRUSIVE_SIZE_C(12884901893)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(25769803751)>, modfunc<BOOST_INTRUSIVE_SIZE_C(51539607551)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(103079215111)>, modfunc<BOOST_INTRUSIVE_SIZE_C(206158430209)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(412316860441)>, modfunc<BOOST_INTRUSIVE_SIZE_C(824633720831)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1649267441651)>, modfunc<BOOST_INTRUSIVE_SIZE_C(3298534883309)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(6597069766657)>, modfunc<BOOST_INTRUSIVE_SIZE_C(13194139533299)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(26388279066623)>, modfunc<BOOST_INTRUSIVE_SIZE_C(52776558133303)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(105553116266489)>, modfunc<BOOST_INTRUSIVE_SIZE_C(211106232532969)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(422212465066001)>, modfunc<BOOST_INTRUSIVE_SIZE_C(844424930131963)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1688849860263953)>, modfunc<BOOST_INTRUSIVE_SIZE_C(3377699720527861)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(6755399441055731)>, modfunc<BOOST_INTRUSIVE_SIZE_C(13510798882111483)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(27021597764222939)>, modfunc<BOOST_INTRUSIVE_SIZE_C(54043195528445957)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(108086391056891903)>, modfunc<BOOST_INTRUSIVE_SIZE_C(216172782113783843)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(432345564227567621)>, modfunc<BOOST_INTRUSIVE_SIZE_C(864691128455135207)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(1729382256910270481)>, modfunc<BOOST_INTRUSIVE_SIZE_C(3458764513820540933)>,
modfunc<BOOST_INTRUSIVE_SIZE_C(6917529027641081903)>, modfunc<BOOST_INTRUSIVE_SIZE_C(9223372036854775783)> //(index 63)
#else
modfunc<BOOST_INTRUSIVE_SIZE_C(2147483647)> //<- 32 bit stops here (index 31) as ptrdiff_t is signed
#endif
};
template<int Dummy>
const std::size_t prime_list_holder<Dummy>::prime_list[] = {
BOOST_INTRUSIVE_SIZE_C(3), BOOST_INTRUSIVE_SIZE_C(7),
BOOST_INTRUSIVE_SIZE_C(11), BOOST_INTRUSIVE_SIZE_C(17),
BOOST_INTRUSIVE_SIZE_C(29), BOOST_INTRUSIVE_SIZE_C(53),
BOOST_INTRUSIVE_SIZE_C(97), BOOST_INTRUSIVE_SIZE_C(193),
BOOST_INTRUSIVE_SIZE_C(389), BOOST_INTRUSIVE_SIZE_C(769),
BOOST_INTRUSIVE_SIZE_C(1543), BOOST_INTRUSIVE_SIZE_C(3079),
BOOST_INTRUSIVE_SIZE_C(6151), BOOST_INTRUSIVE_SIZE_C(12289),
BOOST_INTRUSIVE_SIZE_C(24593), BOOST_INTRUSIVE_SIZE_C(49157),
BOOST_INTRUSIVE_SIZE_C(98317), BOOST_INTRUSIVE_SIZE_C(196613),
BOOST_INTRUSIVE_SIZE_C(393241), BOOST_INTRUSIVE_SIZE_C(786433),
BOOST_INTRUSIVE_SIZE_C(1572869), BOOST_INTRUSIVE_SIZE_C(3145739),
BOOST_INTRUSIVE_SIZE_C(6291469), BOOST_INTRUSIVE_SIZE_C(12582917),
BOOST_INTRUSIVE_SIZE_C(25165843), BOOST_INTRUSIVE_SIZE_C(50331653),
BOOST_INTRUSIVE_SIZE_C(100663319), BOOST_INTRUSIVE_SIZE_C(201326611),
BOOST_INTRUSIVE_SIZE_C(402653189), BOOST_INTRUSIVE_SIZE_C(805306457),
BOOST_INTRUSIVE_SIZE_C(1610612741), //0-30 indexes
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
//Taken from Boost.MultiIndex code, thanks to Joaquin M. Lopez Munoz.
BOOST_INTRUSIVE_SIZE_C(3221225473), //<- 32 bit values stop here (index 31)
BOOST_INTRUSIVE_SIZE_C(6442450939), BOOST_INTRUSIVE_SIZE_C(12884901893),
BOOST_INTRUSIVE_SIZE_C(25769803751), BOOST_INTRUSIVE_SIZE_C(51539607551),
BOOST_INTRUSIVE_SIZE_C(103079215111), BOOST_INTRUSIVE_SIZE_C(206158430209),
BOOST_INTRUSIVE_SIZE_C(412316860441), BOOST_INTRUSIVE_SIZE_C(824633720831),
BOOST_INTRUSIVE_SIZE_C(1649267441651), BOOST_INTRUSIVE_SIZE_C(3298534883309),
BOOST_INTRUSIVE_SIZE_C(6597069766657), BOOST_INTRUSIVE_SIZE_C(13194139533299),
BOOST_INTRUSIVE_SIZE_C(26388279066623), BOOST_INTRUSIVE_SIZE_C(52776558133303),
BOOST_INTRUSIVE_SIZE_C(105553116266489), BOOST_INTRUSIVE_SIZE_C(211106232532969),
BOOST_INTRUSIVE_SIZE_C(422212465066001), BOOST_INTRUSIVE_SIZE_C(844424930131963),
BOOST_INTRUSIVE_SIZE_C(1688849860263953), BOOST_INTRUSIVE_SIZE_C(3377699720527861),
BOOST_INTRUSIVE_SIZE_C(6755399441055731), BOOST_INTRUSIVE_SIZE_C(13510798882111483),
BOOST_INTRUSIVE_SIZE_C(27021597764222939), BOOST_INTRUSIVE_SIZE_C(54043195528445957),
BOOST_INTRUSIVE_SIZE_C(108086391056891903), BOOST_INTRUSIVE_SIZE_C(216172782113783843),
BOOST_INTRUSIVE_SIZE_C(432345564227567621), BOOST_INTRUSIVE_SIZE_C(864691128455135207),
BOOST_INTRUSIVE_SIZE_C(1729382256910270481), BOOST_INTRUSIVE_SIZE_C(3458764513820540933),
BOOST_INTRUSIVE_SIZE_C(6917529027641081903), BOOST_INTRUSIVE_SIZE_C(9223372036854775783) //(index 63)
#else
BOOST_INTRUSIVE_SIZE_C(2147483647) //<- 32 bit stops here (index 31) as ptrdiff_t is signed
#endif
};
template<int Dummy>
const std::size_t prime_list_holder<Dummy>::prime_list_size
= sizeof(prime_list) / sizeof(std::size_t);
#if BOOST_INTRUSIVE_64_BIT_SIZE_T
template<int Dummy>
const uint64_t prime_list_holder<Dummy>::inv_sizes32[] = {
BOOST_INTRUSIVE_SIZE_C(6148914691236517206), //3
BOOST_INTRUSIVE_SIZE_C(2635249153387078803), //7
BOOST_INTRUSIVE_SIZE_C(1676976733973595602), //11
BOOST_INTRUSIVE_SIZE_C(1085102592571150096), //17
BOOST_INTRUSIVE_SIZE_C(636094623231363849), //29
BOOST_INTRUSIVE_SIZE_C(348051774975651918), //53
BOOST_INTRUSIVE_SIZE_C(190172619316593316), //97
BOOST_INTRUSIVE_SIZE_C(95578984837873325), //193
BOOST_INTRUSIVE_SIZE_C(47420935922132524), //389
BOOST_INTRUSIVE_SIZE_C(23987963684927896), //769
BOOST_INTRUSIVE_SIZE_C(11955116055547344), //1543
BOOST_INTRUSIVE_SIZE_C(5991147799191151), //3079
BOOST_INTRUSIVE_SIZE_C(2998982941588287), //6151
BOOST_INTRUSIVE_SIZE_C(1501077717772769), //12289
BOOST_INTRUSIVE_SIZE_C(750081082979285), //24593
BOOST_INTRUSIVE_SIZE_C(375261795343686), //49157
BOOST_INTRUSIVE_SIZE_C(187625172388393), //98317
BOOST_INTRUSIVE_SIZE_C(93822606204624), //196613
BOOST_INTRUSIVE_SIZE_C(46909513691883), //393241
BOOST_INTRUSIVE_SIZE_C(23456218233098), //786433
BOOST_INTRUSIVE_SIZE_C(11728086747027), //1572869
BOOST_INTRUSIVE_SIZE_C(5864041509391), //3145739
BOOST_INTRUSIVE_SIZE_C(2932024948977), //6291469
BOOST_INTRUSIVE_SIZE_C(1466014921160), //12582917
BOOST_INTRUSIVE_SIZE_C(733007198436), //25165843
BOOST_INTRUSIVE_SIZE_C(366503839517), //50331653
BOOST_INTRUSIVE_SIZE_C(183251896093), //100663319
BOOST_INTRUSIVE_SIZE_C(91625960335), //201326611
BOOST_INTRUSIVE_SIZE_C(45812983922), //402653189
BOOST_INTRUSIVE_SIZE_C(22906489714), //805306457
BOOST_INTRUSIVE_SIZE_C(11453246088), //1610612741
BOOST_INTRUSIVE_SIZE_C(5726623060) //3221225473
};
template<int Dummy>
const std::size_t prime_list_holder<Dummy>::inv_sizes32_size
= sizeof(inv_sizes32) / sizeof(uint64_t);
#endif // BOOST_INTRUSIVE_64_BIT_SIZE_T
struct prime_fmod_size : prime_list_holder<>
{
};
#undef BOOST_INTRUSIVE_SIZE_C
#undef BOOST_INTRUSIVE_64_BIT_SIZE_T
#endif //#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class InputIt, class T>
InputIt priv_algo_find(InputIt first, InputIt last, const T& value)
{
for (; first != last; ++first) {
if (*first == value) {
return first;
}
}
return last;
}
template<class InputIt, class T>
typename boost::intrusive::iterator_traits<InputIt>::difference_type
priv_algo_count(InputIt first, InputIt last, const T& value)
{
typename boost::intrusive::iterator_traits<InputIt>::difference_type ret = 0;
for (; first != last; ++first) {
if (*first == value) {
ret++;
}
}
return ret;
}
template <class ForwardIterator1, class ForwardIterator2>
bool priv_algo_is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2)
{
typedef typename
boost::intrusive::iterator_traits<ForwardIterator2>::difference_type
distance_type;
//Efficiently compare identical prefixes: O(N) if sequences
//have the same elements in the same order.
for ( ; first1 != last1; ++first1, ++first2){
if (! (*first1 == *first2))
break;
}
if (first1 == last1){
return true;
}
//Establish last2 assuming equal ranges by iterating over the
//rest of the list.
ForwardIterator2 last2 = first2;
boost::intrusive::iterator_advance(last2, boost::intrusive::iterator_distance(first1, last1));
for(ForwardIterator1 scan = first1; scan != last1; ++scan){
if (scan != (priv_algo_find)(first1, scan, *scan)){
continue; //We've seen this one before.
}
distance_type matches = (priv_algo_count)(first2, last2, *scan);
if (0 == matches || (priv_algo_count)(scan, last1, *scan) != matches){
return false;
}
}
return true;
}
struct hash_bool_flags
{
static const std::size_t unique_keys_pos = 1u;
static const std::size_t constant_time_size_pos = 2u;
static const std::size_t power_2_buckets_pos = 4u;
static const std::size_t cache_begin_pos = 8u;
static const std::size_t compare_hash_pos = 16u;
static const std::size_t incremental_pos = 32u;
static const std::size_t linear_buckets_pos = 64u;
static const std::size_t fastmod_buckets_pos = 128u;
};
template<class Bucket, class Algo, class Disposer, class SizeType>
class exception_bucket_disposer
{
Bucket *cont_;
Disposer &disp_;
const SizeType &constructed_;
exception_bucket_disposer(const exception_bucket_disposer&);
exception_bucket_disposer &operator=(const exception_bucket_disposer&);
public:
exception_bucket_disposer
(Bucket &cont, Disposer &disp, const SizeType &constructed)
: cont_(&cont), disp_(disp), constructed_(constructed)
{}
inline void release()
{ cont_ = 0; }
~exception_bucket_disposer()
{
SizeType n = constructed_;
if(cont_){
while(n--){
Algo::detach_and_dispose(cont_[n].get_node_ptr(), disp_);
}
}
}
};
template<class SupposedValueTraits>
struct unordered_bucket_impl
{
typedef typename detail::get_node_traits
<SupposedValueTraits>::type node_traits;
typedef typename reduced_slist_node_traits
<node_traits>::type reduced_node_traits;
typedef bucket_impl<reduced_node_traits> type;
typedef typename pointer_traits
<typename reduced_node_traits::node_ptr>
::template rebind_pointer<type>::type pointer;
};
template<class SupposedValueTraits>
struct unordered_bucket_ptr_impl
{
typedef typename unordered_bucket_impl<SupposedValueTraits>::pointer type;
};
template <class BucketPtr, class SizeType>
struct bucket_traits_impl
{
private:
BOOST_COPYABLE_AND_MOVABLE(bucket_traits_impl)
public:
/// @cond
typedef BucketPtr bucket_ptr;
typedef SizeType size_type;
/// @endcond
inline bucket_traits_impl(bucket_ptr buckets, size_type len)
: buckets_(buckets), buckets_len_(len)
{}
inline bucket_traits_impl(const bucket_traits_impl& x)
: buckets_(x.buckets_), buckets_len_(x.buckets_len_)
{}
inline bucket_traits_impl(BOOST_RV_REF(bucket_traits_impl) x)
: buckets_(x.buckets_), buckets_len_(x.buckets_len_)
{
x.buckets_ = bucket_ptr(); x.buckets_len_ = 0u;
}
inline bucket_traits_impl& operator=(BOOST_RV_REF(bucket_traits_impl) x)
{
buckets_ = x.buckets_; buckets_len_ = x.buckets_len_;
x.buckets_ = bucket_ptr(); x.buckets_len_ = 0u; return *this;
}
inline bucket_traits_impl& operator=(BOOST_COPY_ASSIGN_REF(bucket_traits_impl) x)
{
buckets_ = x.buckets_; buckets_len_ = x.buckets_len_; return *this;
}
inline bucket_ptr bucket_begin() const
{
return buckets_;
}
inline size_type bucket_count() const BOOST_NOEXCEPT
{
return buckets_len_;
}
private:
bucket_ptr buckets_;
size_type buckets_len_;
};
template <class T>
struct store_hash_is_true
{
template<bool Add>
struct two_or_three {detail::yes_type _[2u + (unsigned)Add];};
template <class U> static detail::yes_type test(...);
template <class U> static two_or_three<U::store_hash> test (int);
static const bool value = sizeof(test<T>(0)) > sizeof(detail::yes_type)*2u;
};
template <class T>
struct optimize_multikey_is_true
{
template<bool Add>
struct two_or_three { detail::yes_type _[2u + (unsigned)Add];};
template <class U> static detail::yes_type test(...);
template <class U> static two_or_three<U::optimize_multikey> test (int);
static const bool value = sizeof(test<T>(0)) > sizeof(detail::yes_type)*2u;
};
struct insert_commit_data_impl
{
std::size_t hash;
std::size_t bucket_idx;
inline std::size_t get_hash() const
{ return hash; }
inline void set_hash(std::size_t h)
{ hash = h; }
};
template<class Node, class SlistNodePtr>
inline typename pointer_traits<SlistNodePtr>::template rebind_pointer<Node>::type
dcast_bucket_ptr(const SlistNodePtr &p)
{
typedef typename pointer_traits<SlistNodePtr>::template rebind_pointer<Node>::type node_ptr;
return pointer_traits<node_ptr>::static_cast_from(p);
}
template<class NodeTraits>
struct group_functions
{
// A group is reverse-linked
//
// A is "first in group"
// C is "last in group"
// __________________
// | _____ _____ |
// | | | | | | <- Group links
// ^ V ^ V ^ V
// _ _ _ _
// A|_| B|_| C|_| D|_|
//
// ^ | ^ | ^ | ^ V <- Bucket links
// _ _____| |_____| |______| |____| |
// |B| |
// ^________________________________|
//
typedef NodeTraits node_traits;
typedef unordered_group_adapter<node_traits> group_traits;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::node node;
typedef typename reduced_slist_node_traits
<node_traits>::type reduced_node_traits;
typedef typename reduced_node_traits::node_ptr slist_node_ptr;
typedef typename reduced_node_traits::node slist_node;
typedef circular_slist_algorithms<group_traits> group_algorithms;
typedef circular_slist_algorithms<node_traits> node_algorithms;
static slist_node_ptr get_bucket_before_begin
(slist_node_ptr bucket_beg, slist_node_ptr bucket_last, slist_node_ptr sp, detail::true_)
{
//First find the last node of p's group.
//This requires checking the first node of the next group or
//the bucket node.
node_ptr p = dcast_bucket_ptr<node>(sp);
node_ptr prev_node = p;
node_ptr nxt(node_traits::get_next(p));
while(!(bucket_beg <= nxt && nxt <= bucket_last) &&
(group_traits::get_next(nxt) == prev_node)){
prev_node = nxt;
nxt = node_traits::get_next(nxt);
}
//If we've reached the bucket node just return it.
if(bucket_beg <= nxt && nxt <= bucket_last){
return nxt;
}
//Otherwise, iterate using group links until the bucket node
node_ptr first_node_of_group = nxt;
node_ptr last_node_group = group_traits::get_next(first_node_of_group);
slist_node_ptr possible_end = node_traits::get_next(last_node_group);
while(!(bucket_beg <= possible_end && possible_end <= bucket_last)){
first_node_of_group = dcast_bucket_ptr<node>(possible_end);
last_node_group = group_traits::get_next(first_node_of_group);
possible_end = node_traits::get_next(last_node_group);
}
return possible_end;
}
static slist_node_ptr get_bucket_before_begin
(slist_node_ptr bucket_beg, slist_node_ptr bucket_last, slist_node_ptr sp, detail::false_)
{
//The end node is embedded in the singly linked list:
//iterate until we reach it.
while (!(bucket_beg <= sp && sp <= bucket_last)){
sp = reduced_node_traits::get_next(sp);
}
return sp;
}
static node_ptr get_prev_to_first_in_group(slist_node_ptr bucket_node, node_ptr first_in_group)
{
node_ptr nb = dcast_bucket_ptr<node>(bucket_node);
node_ptr n;
while((n = node_traits::get_next(nb)) != first_in_group){
nb = group_traits::get_next(n); //go to last in group
}
return nb;
}
static void erase_from_group(slist_node_ptr end_ptr, node_ptr to_erase_ptr, detail::true_)
{
node_ptr const nxt_ptr(node_traits::get_next(to_erase_ptr));
//Check if the next node is in the group (not end node) and reverse linked to
//'to_erase_ptr'. Erase if that's the case.
if(nxt_ptr != end_ptr && to_erase_ptr == group_traits::get_next(nxt_ptr)){
group_algorithms::unlink_after(nxt_ptr);
}
}
inline static void erase_from_group(slist_node_ptr, node_ptr, detail::false_)
{}
inline static node_ptr get_last_in_group(node_ptr first_in_group, detail::true_)
{ return group_traits::get_next(first_in_group); }
inline static node_ptr get_last_in_group(node_ptr n, detail::false_)
{ return n; }
static node_ptr get_first_in_group(node_ptr n, detail::true_)
{
node_ptr ng;
while(n == node_traits::get_next((ng = group_traits::get_next(n)))){
n = ng;
}
return n;
}
inline static node_ptr get_first_in_group(node_ptr n, detail::false_)
{ return n; }
inline static bool is_first_in_group(node_ptr ptr)
{ return node_traits::get_next(group_traits::get_next(ptr)) != ptr; }
inline static void insert_in_group(node_ptr first_in_group, node_ptr n, detail::true_)
{ group_algorithms::link_after(first_in_group, n); }
inline static void insert_in_group(node_ptr, node_ptr, detail::false_)
{}
//Splits a group in two groups, and makes "new_first" the first node in the second group.
//Returns the first element of the first group
static node_ptr split_group(node_ptr const new_first)
{
node_ptr const old_first((get_first_in_group)(new_first, detail::true_()));
//Check new_first was not the first in group
if(old_first != new_first){
node_ptr const last = group_traits::get_next(old_first);
group_traits::set_next(old_first, group_traits::get_next(new_first));
group_traits::set_next(new_first, last);
}
return old_first;
}
};
template<class BucketType, class SplitTraits, class SlistNodeAlgorithms>
class incremental_rehash_rollback
{
private:
typedef BucketType bucket_type;
typedef SplitTraits split_traits;
incremental_rehash_rollback();
incremental_rehash_rollback & operator=(const incremental_rehash_rollback &);
incremental_rehash_rollback (const incremental_rehash_rollback &);
public:
incremental_rehash_rollback
(bucket_type &source_bucket, bucket_type &destiny_bucket, split_traits &split_tr)
: source_bucket_(source_bucket), destiny_bucket_(destiny_bucket)
, split_traits_(split_tr), released_(false)
{}
inline void release()
{ released_ = true; }
~incremental_rehash_rollback()
{
if(!released_){
//If an exception is thrown, just put all moved nodes back in the old bucket
//and move back the split mark.
SlistNodeAlgorithms::transfer_after(destiny_bucket_.get_node_ptr(), source_bucket_.get_node_ptr());
split_traits_.decrement();
}
}
private:
bucket_type &source_bucket_;
bucket_type &destiny_bucket_;
split_traits &split_traits_;
bool released_;
};
template<class NodeTraits>
struct node_functions
{
inline static void store_hash(typename NodeTraits::node_ptr p, std::size_t h, detail::true_)
{ return NodeTraits::set_hash(p, h); }
inline static void store_hash(typename NodeTraits::node_ptr, std::size_t, detail::false_)
{}
};
inline std::size_t hash_to_bucket(std::size_t hash_value, std::size_t bucket_cnt, detail::false_)
{ return hash_value % bucket_cnt; }
inline std::size_t hash_to_bucket(std::size_t hash_value, std::size_t bucket_cnt, detail::true_)
{ return hash_value & (bucket_cnt - 1); }
template<bool Power2Buckets, bool Incremental> //!fastmod_buckets
inline std::size_t hash_to_bucket_split(std::size_t hash_value, std::size_t bucket_cnt, std::size_t split, detail::false_)
{
std::size_t bucket_number = hash_to_bucket(hash_value, bucket_cnt, detail::bool_<Power2Buckets>());
BOOST_IF_CONSTEXPR(Incremental)
bucket_number -= static_cast<std::size_t>(bucket_number >= split)*(bucket_cnt/2);
return bucket_number;
}
template<bool Power2Buckets, bool Incremental> //fastmod_buckets
inline std::size_t hash_to_bucket_split(std::size_t hash_value, std::size_t , std::size_t split, detail::true_)
{
return prime_fmod_size::position(hash_value, split);
}
//!This metafunction will obtain the type of a bucket
//!from the value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_bucket
: public unordered_bucket_impl
< typename ValueTraitsOrHookOption::
template pack<empty>::proto_value_traits>
{};
//!This metafunction will obtain the type of a bucket pointer
//!from the value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_bucket_ptr
: public unordered_bucket_ptr_impl
< typename ValueTraitsOrHookOption::
template pack<empty>::proto_value_traits>
{};
//!This metafunction will obtain the type of the default bucket traits
//!(when the user does not specify the bucket_traits<> option) from the
//!value_traits or hook option to be used with
//!a hash container.
template<class ValueTraitsOrHookOption>
struct unordered_default_bucket_traits
{
typedef typename ValueTraitsOrHookOption::
template pack<empty>::proto_value_traits supposed_value_traits;
typedef bucket_traits_impl
< typename unordered_bucket_ptr_impl
<supposed_value_traits>::type
, std::size_t> type;
};
struct default_bucket_traits;
//hashtable default hook traits
struct default_hashtable_hook_applier
{ template <class T> struct apply{ typedef typename T::default_hashtable_hook type; }; };
template<>
struct is_default_hook_tag<default_hashtable_hook_applier>
{ static const bool value = true; };
struct hashtable_defaults
{
typedef default_hashtable_hook_applier proto_value_traits;
typedef std::size_t size_type;
typedef void key_of_value;
typedef void equal;
typedef void hash;
typedef default_bucket_traits bucket_traits;
static const bool constant_time_size = true;
static const bool power_2_buckets = false;
static const bool cache_begin = false;
static const bool compare_hash = false;
static const bool incremental = false;
static const bool linear_buckets = false;
static const bool fastmod_buckets = false;
};
template<class ValueTraits, bool IsConst>
struct downcast_node_to_value_t
: public detail::node_to_value<ValueTraits, IsConst>
{
typedef detail::node_to_value<ValueTraits, IsConst> base_t;
typedef typename base_t::result_type result_type;
typedef ValueTraits value_traits;
typedef typename unordered_bucket_impl
<value_traits>::type::node_traits::node node;
typedef typename detail::add_const_if_c
<node, IsConst>::type &first_argument_type;
typedef typename detail::add_const_if_c
< typename ValueTraits::node_traits::node
, IsConst>::type &intermediate_argument_type;
typedef typename pointer_traits
<typename ValueTraits::pointer>::
template rebind_pointer
<const ValueTraits>::type const_value_traits_ptr;
inline downcast_node_to_value_t(const_value_traits_ptr ptr)
: base_t(ptr)
{}
inline result_type operator()(first_argument_type arg) const
{ return this->base_t::operator()(static_cast<intermediate_argument_type>(arg)); }
};
template<class F, class SlistNodePtr, class NodePtr>
struct node_cast_adaptor
//Use public inheritance to avoid MSVC bugs with closures
: public detail::ebo_functor_holder<F>
{
typedef detail::ebo_functor_holder<F> base_t;
typedef typename pointer_traits<SlistNodePtr>::element_type slist_node;
typedef typename pointer_traits<NodePtr>::element_type node;
template<class ConvertibleToF, class RealValuTraits>
inline node_cast_adaptor(const ConvertibleToF &c2f, const RealValuTraits *traits)
: base_t(base_t(c2f, traits))
{}
inline typename base_t::node_ptr operator()(const slist_node &to_clone)
{ return base_t::operator()(static_cast<const node &>(to_clone)); }
inline void operator()(SlistNodePtr to_clone)
{
base_t::operator()(pointer_traits<NodePtr>::pointer_to(static_cast<node &>(*to_clone)));
}
};
//bucket_plus_vtraits stores ValueTraits + BucketTraits
//this data is needed by iterators to obtain the
//value from the iterator and detect the bucket
template<class ValueTraits, class BucketTraits, bool LinearBuckets>
struct bucket_plus_vtraits
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(bucket_plus_vtraits)
struct data_type
: public ValueTraits, BucketTraits
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(data_type)
public:
inline data_type(const ValueTraits& val_traits, const BucketTraits& b_traits)
: ValueTraits(val_traits), BucketTraits(b_traits)
{}
inline data_type(BOOST_RV_REF(data_type) other)
: ValueTraits (BOOST_MOVE_BASE(ValueTraits, other))
, BucketTraits(BOOST_MOVE_BASE(BucketTraits, other))
{}
} m_data;
public:
typedef BucketTraits bucket_traits;
typedef ValueTraits value_traits;
static const bool safemode_or_autounlink = is_safe_autounlink<value_traits::link_mode>::value;
typedef typename unordered_bucket_impl
<value_traits>::type bucket_type;
typedef typename unordered_bucket_ptr_impl
<value_traits>::type bucket_ptr;
typedef typename value_traits::node_traits node_traits;
typedef typename bucket_type::node_traits slist_node_traits;
typedef unordered_group_adapter<node_traits> group_traits;
typedef group_functions<node_traits> group_functions_t;
typedef typename detail::if_c
< LinearBuckets
, linear_slist_algorithms<slist_node_traits>
, circular_slist_algorithms<slist_node_traits>
>::type slist_node_algorithms;
typedef typename slist_node_traits::node_ptr slist_node_ptr;
typedef trivial_value_traits
<slist_node_traits, normal_link> slist_value_traits;
typedef slist_iterator<slist_value_traits, false> siterator;
typedef slist_iterator<slist_value_traits, true> const_siterator;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename node_traits::node node;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::pointer pointer;
typedef typename value_traits::const_pointer const_pointer;
typedef typename pointer_traits<pointer>::reference reference;
typedef typename pointer_traits
<const_pointer>::reference const_reference;
typedef circular_slist_algorithms<group_traits> group_algorithms;
typedef typename pointer_traits
<typename value_traits::pointer>::
template rebind_pointer
<const value_traits>::type const_value_traits_ptr;
typedef typename pointer_traits
<typename value_traits::pointer>::
template rebind_pointer
<const bucket_plus_vtraits>::type const_bucket_value_traits_ptr;
typedef detail::bool_<LinearBuckets> linear_buckets_t;
typedef bucket_plus_vtraits& this_ref;
static const std::size_t bucket_overhead = LinearBuckets ? 1u : 0u;
inline bucket_plus_vtraits(const ValueTraits &val_traits, const bucket_traits &b_traits)
: m_data(val_traits, b_traits)
{}
inline bucket_plus_vtraits(BOOST_RV_REF(bucket_plus_vtraits) other)
: m_data(boost::move(((bucket_plus_vtraits&)other).m_data))
{}
inline const_value_traits_ptr priv_value_traits_ptr() const
{ return pointer_traits<const_value_traits_ptr>::pointer_to(this->priv_value_traits()); }
//bucket_value_traits
//
inline const bucket_plus_vtraits &get_bucket_value_traits() const
{ return *this; }
inline bucket_plus_vtraits &get_bucket_value_traits()
{ return *this; }
inline const_bucket_value_traits_ptr bucket_value_traits_ptr() const
{ return pointer_traits<const_bucket_value_traits_ptr>::pointer_to(this->get_bucket_value_traits()); }
//value traits
//
inline const value_traits &priv_value_traits() const
{ return static_cast<const value_traits &>(this->m_data); }
inline value_traits &priv_value_traits()
{ return static_cast<value_traits &>(this->m_data); }
//value traits
//
inline const bucket_traits &priv_bucket_traits() const
{ return static_cast<const bucket_traits &>(this->m_data); }
inline bucket_traits& priv_bucket_traits()
{ return static_cast<bucket_traits&>(this->m_data); }
//bucket operations
inline bucket_ptr priv_bucket_pointer() const BOOST_NOEXCEPT
{ return this->priv_bucket_traits().bucket_begin(); }
inline std::size_t priv_usable_bucket_count() const BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(bucket_overhead){
const std::size_t n = this->priv_bucket_traits().bucket_count();
return n - std::size_t(n != 0)*bucket_overhead;
}
else{
return this->priv_bucket_traits().bucket_count();
}
}
inline bucket_type &priv_bucket(std::size_t n) const BOOST_NOEXCEPT
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(n < this->priv_usable_bucket_count());
return this->priv_bucket_pointer()[std::ptrdiff_t(n)];
}
inline bucket_ptr priv_bucket_ptr(std::size_t n) const BOOST_NOEXCEPT
{ return pointer_traits<bucket_ptr>::pointer_to(this->priv_bucket(n)); }
inline bucket_ptr priv_past_usable_bucket_ptr() const
{ return this->priv_bucket_pointer() + std::ptrdiff_t(priv_usable_bucket_count()); }
inline bucket_ptr priv_invalid_bucket_ptr() const
{
BOOST_IF_CONSTEXPR(LinearBuckets) {
return bucket_ptr();
}
else{
return this->priv_past_usable_bucket_ptr();
}
}
inline void priv_set_sentinel_bucket() const
{
BOOST_IF_CONSTEXPR(LinearBuckets) {
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_bucket_traits().bucket_count() > 1);
bucket_type &b = this->priv_bucket_pointer()[std::ptrdiff_t(this->priv_usable_bucket_count())];
slist_node_algorithms::set_sentinel(b.get_node_ptr());
}
}
inline void priv_unset_sentinel_bucket() const
{
BOOST_IF_CONSTEXPR(LinearBuckets) {
BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_bucket_traits().bucket_count() > 1);
bucket_type& b = this->priv_bucket_pointer()[std::ptrdiff_t(this->priv_usable_bucket_count())];
slist_node_algorithms::init_header(b.get_node_ptr());
}
}
inline siterator priv_end_sit() const
{ return priv_end_sit(linear_buckets_t()); }
inline siterator priv_end_sit(detail::true_) const
{ return siterator(this->priv_bucket_pointer() + std::ptrdiff_t(this->priv_bucket_traits().bucket_count() - bucket_overhead)); }
inline siterator priv_end_sit(detail::false_) const
{ return siterator(this->priv_bucket_pointer()->get_node_ptr()); }
inline siterator priv_bucket_lbegin(std::size_t n) const
{ siterator s(this->priv_bucket_lbbegin(n)); return ++s; }
inline siterator priv_bucket_lbbegin(std::size_t n) const
{ return this->sit_bbegin(this->priv_bucket(n)); }
inline siterator priv_bucket_lend(std::size_t n) const
{ return this->sit_end(this->priv_bucket(n)); }
inline std::size_t priv_bucket_size(std::size_t n) const
{ return slist_node_algorithms::count(this->priv_bucket(n).get_node_ptr())-1u; }
inline bool priv_bucket_empty(std::size_t n) const
{ return slist_node_algorithms::is_empty(this->priv_bucket(n).get_node_ptr()); }
inline bool priv_bucket_empty(bucket_ptr p) const
{ return slist_node_algorithms::is_empty(p->get_node_ptr()); }
static inline siterator priv_bucket_lbegin(bucket_type &b)
{ return siterator(slist_node_traits::get_next(b.get_node_ptr())); }
static inline siterator priv_bucket_lbbegin(bucket_type& b)
{ return siterator(b.get_node_ptr()); }
static inline siterator priv_bucket_lend(bucket_type& b)
{ return siterator(slist_node_algorithms::end_node(b.get_node_ptr())); }
static inline std::size_t priv_bucket_size(const bucket_type& b)
{ return slist_node_algorithms::count(b.get_node_ptr())-1u; }
static inline bool priv_bucket_empty(const bucket_type& b)
{ return slist_node_algorithms::is_empty(b.get_node_ptr()); }
template<class NodeDisposer>
static std::size_t priv_erase_from_single_bucket
(bucket_type &b, siterator sbefore_first, siterator slast, NodeDisposer node_disposer, detail::true_) //optimize multikey
{
std::size_t n = 0;
siterator const sfirst(++siterator(sbefore_first));
if(sfirst != slast){
node_ptr const nf = dcast_bucket_ptr<node>(sfirst.pointed_node());
node_ptr const nl = dcast_bucket_ptr<node>(slast.pointed_node());
slist_node_ptr const ne = (priv_bucket_lend(b)).pointed_node();
if(group_functions_t::is_first_in_group(nf)) {
// The first node is at the beginning of a group.
if(nl != ne){
group_functions_t::split_group(nl);
}
}
else {
node_ptr const group1 = group_functions_t::split_group(nf);
if(nl != ne) {
node_ptr const group2 = group_functions_t::split_group(nl);
if(nf == group2) { //Both first and last in the same group
//so join group1 and group2
node_ptr const end1 = group_traits::get_next(group1);
node_ptr const end2 = group_traits::get_next(group2);
group_traits::set_next(group1, end2);
group_traits::set_next(nl, end1);
}
}
}
n = slist_node_algorithms::unlink_after_and_dispose(sbefore_first.pointed_node(), slast.pointed_node(), node_disposer);
}
return n;
}
template<class NodeDisposer>
static std::size_t priv_erase_from_single_bucket
(bucket_type &, siterator sbefore_first, siterator slast, NodeDisposer node_disposer, detail::false_) //optimize multikey
{
return slist_node_algorithms::unlink_after_and_dispose(sbefore_first.pointed_node(), slast.pointed_node(), node_disposer);
}
template<class NodeDisposer>
static void priv_erase_node(bucket_type &b, siterator i, NodeDisposer node_disposer, detail::true_) //optimize multikey
{
slist_node_ptr const ne(priv_bucket_lend(b).pointed_node());
slist_node_ptr const nbb(priv_bucket_lbbegin(b).pointed_node());
node_ptr n(dcast_bucket_ptr<node>(i.pointed_node()));
node_ptr pos = node_traits::get_next(group_traits::get_next(n));
node_ptr bn;
node_ptr nn(node_traits::get_next(n));
if(pos != n) {
//Node is the first of the group
bn = group_functions_t::get_prev_to_first_in_group(nbb, n);
//Unlink the rest of the group if it's not the last node of its group
if(nn != ne && group_traits::get_next(nn) == n){
group_algorithms::unlink_after(nn);
}
}
else if(nn != ne && group_traits::get_next(nn) == n){
//Node is not the end of the group
bn = group_traits::get_next(n);
group_algorithms::unlink_after(nn);
}
else{
//Node is the end of the group
bn = group_traits::get_next(n);
node_ptr const x(group_algorithms::get_previous_node(n));
group_algorithms::unlink_after(x);
}
slist_node_algorithms::unlink_after_and_dispose(bn, node_disposer);
}
template<class NodeDisposer>
inline static void priv_erase_node(bucket_type &b, siterator i, NodeDisposer node_disposer, detail::false_) //!optimize multikey
{
slist_node_ptr bi = slist_node_algorithms::get_previous_node(b.get_node_ptr(), i.pointed_node());
slist_node_algorithms::unlink_after_and_dispose(bi, node_disposer);
}
template<class NodeDisposer, bool OptimizeMultikey>
std::size_t priv_erase_node_range( siterator const &before_first_it, std::size_t const first_bucket
, siterator const &last_it, std::size_t const last_bucket
, NodeDisposer node_disposer, detail::bool_<OptimizeMultikey> optimize_multikey_tag)
{
std::size_t num_erased(0);
siterator last_step_before_it;
if(first_bucket != last_bucket){
bucket_type *b = &this->priv_bucket(0);
num_erased += this->priv_erase_from_single_bucket
(b[first_bucket], before_first_it, this->priv_bucket_lend(first_bucket), node_disposer, optimize_multikey_tag);
for(std::size_t i = 0, n = (last_bucket - first_bucket - 1); i != n; ++i){
num_erased += this->priv_erase_whole_bucket(b[first_bucket+i+1], node_disposer);
}
last_step_before_it = this->priv_bucket_lbbegin(last_bucket);
}
else{
last_step_before_it = before_first_it;
}
num_erased += this->priv_erase_from_single_bucket
(this->priv_bucket(last_bucket), last_step_before_it, last_it, node_disposer, optimize_multikey_tag);
return num_erased;
}
static siterator priv_get_last(bucket_type &b, detail::true_) //optimize multikey
{
//First find the last node of p's group.
//This requires checking the first node of the next group or
//the bucket node.
slist_node_ptr end_ptr(sit_end(b).pointed_node());
slist_node_ptr last_node_group(b.get_node_ptr());
slist_node_ptr possible_end(slist_node_traits::get_next(last_node_group));
while(end_ptr != possible_end){
last_node_group = group_traits::get_next(dcast_bucket_ptr<node>(possible_end));
possible_end = slist_node_traits::get_next(last_node_group);
}
return siterator(last_node_group);
}
inline static siterator priv_get_last(bucket_type &b, detail::false_) //NOT optimize multikey
{
slist_node_ptr p = b.get_node_ptr();
return siterator(slist_node_algorithms::get_previous_node(p, slist_node_algorithms::end_node(p)));
}
template<class NodeDisposer>
static inline std::size_t priv_erase_whole_bucket(bucket_type &b, NodeDisposer node_disposer)
{ return slist_node_algorithms::detach_and_dispose(b.get_node_ptr(), node_disposer); }
static siterator priv_get_previous(bucket_type &b, siterator i, detail::true_) //optimize multikey
{
node_ptr const elem(dcast_bucket_ptr<node>(i.pointed_node()));
node_ptr const prev_in_group(group_traits::get_next(elem));
bool const first_in_group = node_traits::get_next(prev_in_group) != elem;
slist_node_ptr n = first_in_group
? group_functions_t::get_prev_to_first_in_group(b.get_node_ptr(), elem)
: group_traits::get_next(elem)
;
return siterator(n);
}
inline static siterator priv_get_previous(bucket_type &b, siterator i, detail::false_) //NOT optimize multikey
{ return siterator(slist_node_algorithms::get_previous_node(b.get_node_ptr(), i.pointed_node())); }
template<class Disposer>
struct typeof_node_disposer
{
typedef node_cast_adaptor
< detail::node_disposer< Disposer, value_traits, CommonSListAlgorithms>
, slist_node_ptr, node_ptr > type;
};
template<class Disposer>
inline typename typeof_node_disposer<Disposer>::type
make_node_disposer(const Disposer &disposer) const
{
typedef typename typeof_node_disposer<Disposer>::type return_t;
return return_t(disposer, &this->priv_value_traits());
}
static inline bucket_ptr to_ptr(bucket_type &b)
{ return pointer_traits<bucket_ptr>::pointer_to(b); }
static inline siterator sit_bbegin(bucket_type& b)
{ return siterator(b.get_node_ptr()); }
static inline siterator sit_begin(bucket_type& b)
{ return siterator(b.begin_ptr()); }
static inline siterator sit_end(bucket_type& b)
{ return siterator(slist_node_algorithms::end_node(b.get_node_ptr())); }
inline static std::size_t priv_stored_hash(siterator s, detail::true_) //store_hash
{ return node_traits::get_hash(dcast_bucket_ptr<node>(s.pointed_node())); }
inline static std::size_t priv_stored_hash(siterator, detail::false_) //NO store_hash
{ return std::size_t(-1); }
inline node &priv_value_to_node(reference v)
{ return *this->priv_value_traits().to_node_ptr(v); }
inline const node &priv_value_to_node(const_reference v) const
{ return *this->priv_value_traits().to_node_ptr(v); }
inline node_ptr priv_value_to_node_ptr(reference v)
{ return this->priv_value_traits().to_node_ptr(v); }
inline const_node_ptr priv_value_to_node_ptr(const_reference v) const
{ return this->priv_value_traits().to_node_ptr(v); }
inline reference priv_value_from_siterator(siterator s)
{ return *this->priv_value_traits().to_value_ptr(dcast_bucket_ptr<node>(s.pointed_node())); }
inline const_reference priv_value_from_siterator(siterator s) const
{ return *this->priv_value_traits().to_value_ptr(dcast_bucket_ptr<node>(s.pointed_node())); }
static void priv_init_buckets(const bucket_ptr buckets_ptr, const std::size_t bucket_cnt)
{
bucket_ptr buckets_it = buckets_ptr;
for (std::size_t bucket_i = 0; bucket_i != bucket_cnt; ++buckets_it, ++bucket_i) {
slist_node_algorithms::init_header(buckets_it->get_node_ptr());
}
}
void priv_clear_buckets(const bucket_ptr buckets_ptr, const std::size_t bucket_cnt)
{
bucket_ptr buckets_it = buckets_ptr;
for(std::size_t bucket_i = 0; bucket_i != bucket_cnt; ++buckets_it, ++bucket_i){
bucket_type &b = *buckets_it;
BOOST_IF_CONSTEXPR(safemode_or_autounlink){
slist_node_algorithms::detach_and_dispose(b.get_node_ptr(), this->make_node_disposer(detail::null_disposer()));
}
else{
slist_node_algorithms::init_header(b.get_node_ptr());
}
}
}
inline std::size_t priv_stored_or_compute_hash(const value_type &v, detail::true_) const //For store_hash == true
{ return node_traits::get_hash(this->priv_value_traits().to_node_ptr(v)); }
typedef hashtable_iterator<bucket_plus_vtraits, LinearBuckets, false> iterator;
typedef hashtable_iterator<bucket_plus_vtraits, LinearBuckets, true> const_iterator;
inline iterator end() BOOST_NOEXCEPT
{ return this->build_iterator(this->priv_end_sit(), bucket_ptr()); }
inline const_iterator end() const BOOST_NOEXCEPT
{ return this->cend(); }
inline const_iterator cend() const BOOST_NOEXCEPT
{ return this->build_const_iterator(this->priv_end_sit(), bucket_ptr()); }
inline iterator build_iterator(siterator s, bucket_ptr p)
{ return this->build_iterator(s, p, linear_buckets_t()); }
inline iterator build_iterator(siterator s, bucket_ptr p, detail::true_) //linear buckets
{ return iterator(s, p, this->priv_value_traits_ptr()); }
inline iterator build_iterator(siterator s, bucket_ptr, detail::false_) //!linear buckets
{ return iterator(s, &this->get_bucket_value_traits()); }
inline const_iterator build_const_iterator(siterator s, bucket_ptr p) const
{ return this->build_const_iterator(s, p, linear_buckets_t()); }
inline const_iterator build_const_iterator(siterator s, bucket_ptr p, detail::true_) const //linear buckets
{ return const_iterator(s, p, this->priv_value_traits_ptr()); }
inline const_iterator build_const_iterator(siterator s, bucket_ptr, detail::false_) const //!linear buckets
{ return const_iterator(s, &this->get_bucket_value_traits()); }
};
template<class Hash, class>
struct get_hash
{
typedef Hash type;
};
template<class T>
struct get_hash<void, T>
{
typedef detail::internal_hash_functor<T> type;
};
template<class EqualTo, class>
struct get_equal_to
{
typedef EqualTo type;
};
template<class T>
struct get_equal_to<void, T>
{
typedef value_equal<T> type;
};
template<class KeyOfValue, class T>
struct get_hash_key_of_value
{
typedef KeyOfValue type;
};
template<class T>
struct get_hash_key_of_value<void, T>
{
typedef ::boost::intrusive::detail::identity<T> type;
};
template<class T, class VoidOrKeyOfValue>
struct hash_key_types_base
{
typedef typename get_hash_key_of_value
< VoidOrKeyOfValue, T>::type key_of_value;
typedef typename key_of_value::type key_type;
};
template<class T, class VoidOrKeyOfValue, class VoidOrKeyHash>
struct hash_key_hash
: get_hash
< VoidOrKeyHash
, typename hash_key_types_base<T, VoidOrKeyOfValue>::key_type
>
{};
template<class T, class VoidOrKeyOfValue, class VoidOrKeyEqual>
struct hash_key_equal
: get_equal_to
< VoidOrKeyEqual
, typename hash_key_types_base<T, VoidOrKeyOfValue>::key_type
>
{};
//bucket_hash_t
//Stores bucket_plus_vtraits plust the hash function
template<class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash, class BucketTraits, bool LinearBuckets>
struct bucket_hash_t
//Use public inheritance to avoid MSVC bugs with closures
: public detail::ebo_functor_holder
<typename hash_key_hash < typename bucket_plus_vtraits<ValueTraits,BucketTraits, LinearBuckets >::value_traits::value_type
, VoidOrKeyOfValue
, VoidOrKeyHash
>::type
>
, bucket_plus_vtraits<ValueTraits, BucketTraits, LinearBuckets> //4
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(bucket_hash_t)
public:
typedef typename bucket_plus_vtraits
<ValueTraits,BucketTraits, LinearBuckets>::value_traits value_traits;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::node_traits node_traits;
typedef hash_key_hash
< value_type, VoidOrKeyOfValue, VoidOrKeyHash> hash_key_hash_t;
typedef typename hash_key_hash_t::type hasher;
typedef typename hash_key_types_base<value_type, VoidOrKeyOfValue>::key_of_value key_of_value;
typedef BucketTraits bucket_traits;
typedef bucket_plus_vtraits<ValueTraits, BucketTraits, LinearBuckets> bucket_plus_vtraits_t;
typedef detail::ebo_functor_holder<hasher> base_t;
inline bucket_hash_t(const ValueTraits &val_traits, const bucket_traits &b_traits, const hasher & h)
: base_t(h)
, bucket_plus_vtraits_t(val_traits, b_traits)
{}
inline bucket_hash_t(BOOST_RV_REF(bucket_hash_t) other)
: base_t(BOOST_MOVE_BASE(base_t, other))
, bucket_plus_vtraits_t(BOOST_MOVE_BASE(bucket_plus_vtraits_t, other))
{}
template<class K>
inline std::size_t priv_hash(const K &k) const
{ return this->base_t::operator()(k); }
inline const hasher &priv_hasher() const
{ return this->base_t::get(); }
inline hasher &priv_hasher()
{ return this->base_t::get(); }
using bucket_plus_vtraits_t::priv_stored_or_compute_hash; //For store_hash == true
inline std::size_t priv_stored_or_compute_hash(const value_type &v, detail::false_) const //For store_hash == false
{ return this->priv_hasher()(key_of_value()(v)); }
};
template<class ValueTraits, class BucketTraits, class VoidOrKeyOfValue, class VoidOrKeyEqual, bool LinearBuckets>
struct hashtable_equal_holder
{
typedef detail::ebo_functor_holder
< typename hash_key_equal < typename bucket_plus_vtraits
<ValueTraits, BucketTraits, LinearBuckets>::value_traits::value_type
, VoidOrKeyOfValue
, VoidOrKeyEqual
>::type
> type;
};
//bucket_hash_equal_t
//Stores bucket_hash_t and the equality function when the first
//non-empty bucket shall not be cached.
template<class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash, class VoidOrKeyEqual, class BucketTraits, bool LinearBuckets, bool>
struct bucket_hash_equal_t
//Use public inheritance to avoid MSVC bugs with closures
: public bucket_hash_t<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, BucketTraits, LinearBuckets> //3
, public hashtable_equal_holder<ValueTraits, BucketTraits, VoidOrKeyOfValue, VoidOrKeyEqual, LinearBuckets>::type //equal
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(bucket_hash_equal_t)
public:
typedef typename hashtable_equal_holder
< ValueTraits, BucketTraits, VoidOrKeyOfValue
, VoidOrKeyEqual, LinearBuckets>::type equal_holder_t;
typedef bucket_hash_t< ValueTraits, VoidOrKeyOfValue
, VoidOrKeyHash, BucketTraits
, LinearBuckets> bucket_hash_type;
typedef bucket_plus_vtraits
<ValueTraits, BucketTraits, LinearBuckets> bucket_plus_vtraits_t;
typedef ValueTraits value_traits;
typedef typename equal_holder_t::functor_type key_equal;
typedef typename bucket_hash_type::hasher hasher;
typedef BucketTraits bucket_traits;
typedef typename bucket_plus_vtraits_t::siterator siterator;
typedef typename bucket_plus_vtraits_t::const_siterator const_siterator;
typedef typename bucket_plus_vtraits_t::bucket_type bucket_type;
typedef typename bucket_plus_vtraits_t::slist_node_algorithms slist_node_algorithms;
typedef typename unordered_bucket_ptr_impl
<value_traits>::type bucket_ptr;
bucket_hash_equal_t(const ValueTraits &val_traits, const bucket_traits &b_traits, const hasher & h, const key_equal &e)
: bucket_hash_type(val_traits, b_traits, h)
, equal_holder_t(e)
{}
inline bucket_hash_equal_t(BOOST_RV_REF(bucket_hash_equal_t) other)
: bucket_hash_type(BOOST_MOVE_BASE(bucket_hash_type, other))
, equal_holder_t(BOOST_MOVE_BASE(equal_holder_t, other))
{}
inline bucket_ptr priv_get_cache()
{ return this->priv_bucket_pointer(); }
inline void priv_set_cache(bucket_ptr)
{}
inline void priv_set_cache_bucket_num(std::size_t)
{}
inline std::size_t priv_get_cache_bucket_num()
{ return 0u; }
inline void priv_init_cache()
{}
inline void priv_swap_cache(bucket_hash_equal_t &)
{}
siterator priv_begin(bucket_ptr &pbucketptr) const
{
std::size_t n = 0;
std::size_t bucket_cnt = this->priv_usable_bucket_count();
for (n = 0; n < bucket_cnt; ++n){
bucket_type &b = this->priv_bucket(n);
if(!slist_node_algorithms::is_empty(b.get_node_ptr())){
pbucketptr = this->to_ptr(b);
return siterator(b.begin_ptr());
}
}
pbucketptr = this->priv_invalid_bucket_ptr();
return this->priv_end_sit();
}
inline void priv_insertion_update_cache(std::size_t)
{}
inline void priv_erasure_update_cache_range(std::size_t, std::size_t)
{}
inline void priv_erasure_update_cache(bucket_ptr)
{}
inline void priv_erasure_update_cache()
{}
inline const key_equal &priv_equal() const
{ return this->equal_holder_t::get(); }
inline key_equal &priv_equal()
{ return this->equal_holder_t::get(); }
};
//bucket_hash_equal_t
//Stores bucket_hash_t and the equality function when the first
//non-empty bucket shall be cached.
template<class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash, class VoidOrKeyEqual, class BucketTraits, bool LinearBuckets> //cache_begin == true version
struct bucket_hash_equal_t<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual, BucketTraits, LinearBuckets, true>
//Use public inheritance to avoid MSVC bugs with closures
: public bucket_hash_t<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, BucketTraits, LinearBuckets> //2
, public hashtable_equal_holder<ValueTraits, BucketTraits, VoidOrKeyOfValue, VoidOrKeyEqual, LinearBuckets>::type
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(bucket_hash_equal_t)
public:
typedef typename hashtable_equal_holder
< ValueTraits, BucketTraits
, VoidOrKeyOfValue, VoidOrKeyEqual, LinearBuckets>::type equal_holder_t;
typedef bucket_plus_vtraits
< ValueTraits, BucketTraits, LinearBuckets> bucket_plus_vtraits_t;
typedef ValueTraits value_traits;
typedef typename equal_holder_t::functor_type key_equal;
typedef bucket_hash_t
< ValueTraits, VoidOrKeyOfValue
, VoidOrKeyHash, BucketTraits, LinearBuckets> bucket_hash_type;
typedef typename bucket_hash_type::hasher hasher;
typedef BucketTraits bucket_traits;
typedef typename bucket_plus_vtraits_t::siterator siterator;
typedef typename bucket_plus_vtraits_t::slist_node_algorithms slist_node_algorithms;
bucket_hash_equal_t(const ValueTraits &val_traits, const bucket_traits &b_traits, const hasher & h, const key_equal &e)
: bucket_hash_type(val_traits, b_traits, h)
, equal_holder_t(e)
{}
inline bucket_hash_equal_t(BOOST_RV_REF(bucket_hash_equal_t) other)
: bucket_hash_type(BOOST_MOVE_BASE(bucket_hash_type, other))
, equal_holder_t(BOOST_MOVE_BASE(equal_holder_t, other))
{}
typedef typename unordered_bucket_ptr_impl
<typename bucket_hash_type::value_traits>::type bucket_ptr;
inline bucket_ptr priv_get_cache() const
{ return cached_begin_; }
inline void priv_set_cache(bucket_ptr p)
{ cached_begin_ = p; }
inline void priv_set_cache_bucket_num(std::size_t insertion_bucket)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(insertion_bucket <= this->priv_usable_bucket_count());
this->cached_begin_ = this->priv_bucket_pointer() + std::ptrdiff_t(insertion_bucket);
}
inline std::size_t priv_get_cache_bucket_num()
{ return std::size_t(this->cached_begin_ - this->priv_bucket_pointer()); }
inline void priv_init_cache()
{ this->cached_begin_ = this->priv_past_usable_bucket_ptr(); }
inline void priv_swap_cache(bucket_hash_equal_t &other)
{ ::boost::adl_move_swap(this->cached_begin_, other.cached_begin_); }
siterator priv_begin(bucket_ptr& pbucketptr) const
{
pbucketptr = this->cached_begin_;
if(this->cached_begin_ == this->priv_past_usable_bucket_ptr()){
return this->priv_end_sit();
}
else{
return siterator(cached_begin_->begin_ptr());
}
}
void priv_insertion_update_cache(std::size_t insertion_bucket)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT(insertion_bucket < this->priv_usable_bucket_count());
bucket_ptr p = this->priv_bucket_pointer() + std::ptrdiff_t(insertion_bucket);
if(p < this->cached_begin_){
this->cached_begin_ = p;
}
}
inline const key_equal &priv_equal() const
{ return this->equal_holder_t::get(); }
inline key_equal &priv_equal()
{ return this->equal_holder_t::get(); }
void priv_erasure_update_cache_range(std::size_t first_bucket_num, std::size_t last_bucket_num)
{
//If the last bucket is the end, the cache must be updated
//to the last position if all
if(this->priv_get_cache_bucket_num() == first_bucket_num &&
this->priv_bucket_empty(first_bucket_num) ){
this->priv_set_cache(this->priv_bucket_pointer() + std::ptrdiff_t(last_bucket_num));
this->priv_erasure_update_cache();
}
}
void priv_erasure_update_cache(bucket_ptr first_bucket)
{
//If the last bucket is the end, the cache must be updated
//to the last position if all
if (this->priv_get_cache() == first_bucket &&
this->priv_bucket_empty(first_bucket)) {
this->priv_erasure_update_cache();
}
}
void priv_erasure_update_cache()
{
const bucket_ptr cache_end = this->priv_past_usable_bucket_ptr();
while( cached_begin_ != cache_end) {
if (!slist_node_algorithms::is_empty(cached_begin_->get_node_ptr())) {
return;
}
++cached_begin_;
}
}
bucket_ptr cached_begin_;
};
//This wrapper around size_traits is used
//to maintain minimal container size with compilers like MSVC
//that have problems with EBO and multiple empty base classes
template<class DeriveFrom, class SizeType, bool>
struct hashtable_size_wrapper
: public DeriveFrom
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable_size_wrapper)
public:
template<class Base, class Arg0, class Arg1, class Arg2>
hashtable_size_wrapper( BOOST_FWD_REF(Base) base, BOOST_FWD_REF(Arg0) arg0
, BOOST_FWD_REF(Arg1) arg1, BOOST_FWD_REF(Arg2) arg2)
: DeriveFrom( ::boost::forward<Base>(base)
, ::boost::forward<Arg0>(arg0)
, ::boost::forward<Arg1>(arg1)
, ::boost::forward<Arg2>(arg2))
{}
typedef detail::size_holder < true, SizeType> size_traits;//size_traits
inline hashtable_size_wrapper(BOOST_RV_REF(hashtable_size_wrapper) other)
: DeriveFrom(BOOST_MOVE_BASE(DeriveFrom, other))
{}
size_traits size_traits_;
typedef const size_traits & size_traits_const_t;
typedef size_traits & size_traits_t;
inline SizeType get_hashtable_size_wrapper_size() const
{ return size_traits_.get_size(); }
inline void set_hashtable_size_wrapper_size(SizeType s)
{ size_traits_.set_size(s); }
inline void inc_hashtable_size_wrapper_size()
{ size_traits_.increment(); }
inline void dec_hashtable_size_wrapper_size()
{ size_traits_.decrement(); }
inline size_traits_t priv_size_traits()
{ return size_traits_; }
};
template<class DeriveFrom, class SizeType>
struct hashtable_size_wrapper<DeriveFrom, SizeType, false>
: public DeriveFrom
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable_size_wrapper)
public:
template<class Base, class Arg0, class Arg1, class Arg2>
hashtable_size_wrapper( BOOST_FWD_REF(Base) base, BOOST_FWD_REF(Arg0) arg0
, BOOST_FWD_REF(Arg1) arg1, BOOST_FWD_REF(Arg2) arg2)
: DeriveFrom( ::boost::forward<Base>(base)
, ::boost::forward<Arg0>(arg0)
, ::boost::forward<Arg1>(arg1)
, ::boost::forward<Arg2>(arg2))
{}
inline hashtable_size_wrapper(BOOST_RV_REF(hashtable_size_wrapper) other)
: DeriveFrom(BOOST_MOVE_BASE(DeriveFrom, other))
{}
typedef detail::size_holder< false, SizeType> size_traits;
typedef size_traits size_traits_const_t;
typedef size_traits size_traits_t;
inline SizeType get_hashtable_size_wrapper_size() const
{ return 0u; }
inline void set_hashtable_size_wrapper_size(SizeType)
{}
inline void inc_hashtable_size_wrapper_size()
{}
inline void dec_hashtable_size_wrapper_size()
{}
inline size_traits priv_size_traits()
{ return size_traits(); }
};
template< class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash
, class VoidOrKeyEqual, class BucketTraits, class SizeType
, std::size_t BoolFlags>
struct get_hashtable_size_wrapper_bucket
{
typedef hashtable_size_wrapper
< bucket_hash_equal_t
< ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual
, BucketTraits
, 0 != (BoolFlags & hash_bool_flags::linear_buckets_pos)
, 0 != (BoolFlags & hash_bool_flags::cache_begin_pos)
> //2
, SizeType
, (BoolFlags & hash_bool_flags::incremental_pos) != 0 ||
(BoolFlags & hash_bool_flags::fastmod_buckets_pos) != 0
> type;
};
//hashdata_internal
//Stores bucket_hash_equal_t and split_traits
template<class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash, class VoidOrKeyEqual, class BucketTraits, class SizeType, std::size_t BoolFlags>
struct hashdata_internal
: public get_hashtable_size_wrapper_bucket
<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual, BucketTraits, SizeType, BoolFlags>::type
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(hashdata_internal)
public:
static const bool linear_buckets = 0 != (BoolFlags & hash_bool_flags::linear_buckets_pos);
typedef typename get_hashtable_size_wrapper_bucket
<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual, BucketTraits, SizeType, BoolFlags>::type split_bucket_hash_equal_t;
typedef typename split_bucket_hash_equal_t::key_equal key_equal;
typedef typename split_bucket_hash_equal_t::hasher hasher;
typedef bucket_plus_vtraits
<ValueTraits, BucketTraits, linear_buckets> bucket_plus_vtraits_t;
typedef SizeType size_type;
typedef typename split_bucket_hash_equal_t::size_traits split_traits;
typedef typename bucket_plus_vtraits_t::bucket_ptr bucket_ptr;
typedef typename bucket_plus_vtraits_t::const_value_traits_ptr const_value_traits_ptr;
typedef typename bucket_plus_vtraits_t::siterator siterator;
typedef typename bucket_plus_vtraits_t::bucket_traits bucket_traits;
typedef typename bucket_plus_vtraits_t::value_traits value_traits;
typedef typename bucket_plus_vtraits_t::bucket_type bucket_type;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::pointer pointer;
typedef typename value_traits::const_pointer const_pointer;
typedef typename pointer_traits<pointer>::reference reference;
typedef typename pointer_traits
<const_pointer>::reference const_reference;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename bucket_plus_vtraits_t::slist_node_algorithms slist_node_algorithms;
typedef typename bucket_plus_vtraits_t::slist_node_ptr slist_node_ptr;
typedef hash_key_types_base
< typename ValueTraits::value_type
, VoidOrKeyOfValue
> hash_types_base;
typedef typename hash_types_base::key_of_value key_of_value;
static const bool store_hash = store_hash_is_true<node_traits>::value;
static const bool safemode_or_autounlink = is_safe_autounlink<value_traits::link_mode>::value;
static const bool stateful_value_traits = detail::is_stateful_value_traits<value_traits>::value;
typedef detail::bool_<store_hash> store_hash_t;
typedef detail::transform_iterator
< siterator
, downcast_node_to_value_t<value_traits, false> > local_iterator;
typedef detail::transform_iterator
< siterator
, downcast_node_to_value_t<value_traits, true> > const_local_iterator;
typedef detail::bool_<linear_buckets> linear_buckets_t;
hashdata_internal( const ValueTraits &val_traits, const bucket_traits &b_traits
, const hasher & h, const key_equal &e)
: split_bucket_hash_equal_t(val_traits, b_traits, h, e)
{}
inline hashdata_internal(BOOST_RV_REF(hashdata_internal) other)
: split_bucket_hash_equal_t(BOOST_MOVE_BASE(split_bucket_hash_equal_t, other))
{}
inline typename split_bucket_hash_equal_t::size_traits_t priv_split_traits()
{ return this->priv_size_traits(); }
~hashdata_internal()
{ this->priv_clear_buckets(); }
using split_bucket_hash_equal_t::priv_clear_buckets;
void priv_clear_buckets()
{
const std::size_t cache_num = this->priv_get_cache_bucket_num();
this->priv_clear_buckets(this->priv_get_cache(), this->priv_usable_bucket_count() - cache_num);
}
void priv_clear_buckets_and_cache()
{
this->priv_clear_buckets();
this->priv_init_cache();
}
void priv_init_buckets_and_cache()
{
this->priv_init_buckets(this->priv_bucket_pointer(), this->priv_usable_bucket_count());
this->priv_init_cache();
}
typedef typename bucket_plus_vtraits_t::iterator iterator;
typedef typename bucket_plus_vtraits_t::const_iterator const_iterator;
//public functions
inline SizeType split_count() const BOOST_NOEXCEPT
{ return this->split_bucket_hash_equal_t::get_hashtable_size_wrapper_size(); }
inline void split_count(SizeType s) BOOST_NOEXCEPT
{ this->split_bucket_hash_equal_t::set_hashtable_size_wrapper_size(s); }
//public functions
inline void inc_split_count() BOOST_NOEXCEPT
{ this->split_bucket_hash_equal_t::inc_hashtable_size_wrapper_size(); }
inline void dec_split_count() BOOST_NOEXCEPT
{ this->split_bucket_hash_equal_t::dec_hashtable_size_wrapper_size(); }
inline static SizeType initial_split_from_bucket_count(SizeType bc) BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(fastmod_buckets) {
size_type split;
split = static_cast<SizeType>(prime_fmod_size::lower_size_index(bc));
//The passed bucket size must be exactly the supported one
BOOST_ASSERT(prime_fmod_size::size(split) == bc);
return split;
}
else {
BOOST_IF_CONSTEXPR(incremental) {
BOOST_ASSERT(0 == (std::size_t(bc) & (std::size_t(bc) - 1u)));
return size_type(bc >> 1u);
}
else{
return bc;
}
}
}
inline static SizeType rehash_split_from_bucket_count(SizeType bc) BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(fastmod_buckets) {
return (initial_split_from_bucket_count)(bc);
}
else {
BOOST_IF_CONSTEXPR(incremental) {
BOOST_ASSERT(0 == (std::size_t(bc) & (std::size_t(bc) - 1u)));
return bc;
}
else{
return bc;
}
}
}
inline iterator iterator_to(reference value) BOOST_NOEXCEPT_IF(!linear_buckets)
{ return iterator_to(value, linear_buckets_t()); }
const_iterator iterator_to(const_reference value) const BOOST_NOEXCEPT_IF(!linear_buckets)
{ return iterator_to(value, linear_buckets_t()); }
iterator iterator_to(reference value, detail::true_) //linear_buckets
{
const std::size_t h = this->priv_stored_or_compute_hash(value, store_hash_t());
siterator sit(this->priv_value_to_node_ptr(value));
return this->build_iterator(sit, this->priv_hash_to_bucket_ptr(h));
}
const_iterator iterator_to(const_reference value, detail::true_) const //linear_buckets
{
const std::size_t h = this->priv_stored_or_compute_hash(value, store_hash_t());
siterator const sit = siterator
( pointer_traits<node_ptr>::const_cast_from(this->priv_value_to_node_ptr(value))
);
return this->build_const_iterator(sit, this->priv_hash_to_bucket_ptr(h));
}
static const bool incremental = 0 != (BoolFlags & hash_bool_flags::incremental_pos);
static const bool power_2_buckets = incremental || (0 != (BoolFlags & hash_bool_flags::power_2_buckets_pos));
static const bool fastmod_buckets = 0 != (BoolFlags & hash_bool_flags::fastmod_buckets_pos);
typedef detail::bool_<fastmod_buckets> fastmod_buckets_t;
inline bucket_type &priv_hash_to_bucket(std::size_t hash_value) const
{ return this->priv_bucket(this->priv_hash_to_nbucket(hash_value)); }
inline bucket_ptr priv_hash_to_bucket_ptr(std::size_t hash_value) const
{ return this->priv_bucket_ptr(this->priv_hash_to_nbucket(hash_value)); }
inline size_type priv_hash_to_nbucket(std::size_t hash_value) const
{ return (priv_hash_to_nbucket)(hash_value, fastmod_buckets_t()); }
inline size_type priv_hash_to_nbucket(std::size_t hash_value, detail::true_) const //fastmod_buckets_t
{ return static_cast<size_type>(prime_fmod_size::position(hash_value, this->split_count())); }
inline size_type priv_hash_to_nbucket(std::size_t hash_value, detail::false_) const //!fastmod_buckets_t
{
return static_cast<size_type>(hash_to_bucket_split<power_2_buckets, incremental>
(hash_value, this->priv_usable_bucket_count(), this->split_count(), detail::false_()));
}
inline iterator iterator_to(reference value, detail::false_) BOOST_NOEXCEPT
{
return iterator( siterator(this->priv_value_to_node_ptr(value))
, &this->get_bucket_value_traits());
}
const_iterator iterator_to(const_reference value, detail::false_) const BOOST_NOEXCEPT
{
siterator const sit = siterator
( pointer_traits<node_ptr>::const_cast_from(this->priv_value_to_node_ptr(value)) );
return const_iterator(sit, &this->get_bucket_value_traits());
}
static local_iterator s_local_iterator_to(reference value) BOOST_NOEXCEPT
{
BOOST_INTRUSIVE_STATIC_ASSERT((!stateful_value_traits));
siterator sit(value_traits::to_node_ptr(value));
return local_iterator(sit, const_value_traits_ptr());
}
static const_local_iterator s_local_iterator_to(const_reference value) BOOST_NOEXCEPT
{
BOOST_INTRUSIVE_STATIC_ASSERT((!stateful_value_traits));
siterator const sit = siterator
( pointer_traits<node_ptr>::const_cast_from
(value_traits::to_node_ptr(value))
);
return const_local_iterator(sit, const_value_traits_ptr());
}
local_iterator local_iterator_to(reference value) BOOST_NOEXCEPT
{
siterator sit(this->priv_value_to_node_ptr(value));
return local_iterator(sit, this->priv_value_traits_ptr());
}
const_local_iterator local_iterator_to(const_reference value) const BOOST_NOEXCEPT
{
siterator sit
( pointer_traits<node_ptr>::const_cast_from(this->priv_value_to_node_ptr(value)) );
return const_local_iterator(sit, this->priv_value_traits_ptr());
}
inline size_type bucket_count() const BOOST_NOEXCEPT
{ return size_type(this->priv_usable_bucket_count()); }
inline size_type bucket_size(size_type n) const BOOST_NOEXCEPT
{ return (size_type)this->priv_bucket_size(n); }
inline bucket_ptr bucket_pointer() const BOOST_NOEXCEPT
{ return this->priv_bucket_pointer(); }
inline local_iterator begin(size_type n) BOOST_NOEXCEPT
{ return local_iterator(this->priv_bucket_lbegin(n), this->priv_value_traits_ptr()); }
inline const_local_iterator begin(size_type n) const BOOST_NOEXCEPT
{ return this->cbegin(n); }
static inline size_type suggested_upper_bucket_count(size_type n) BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(fastmod_buckets){
std::size_t s = prime_fmod_size::upper_size_index(n);
return static_cast<SizeType>(prime_fmod_size::size(s));
}
else{
return prime_list_holder<0>::suggested_upper_bucket_count(n);
}
}
static inline size_type suggested_lower_bucket_count(size_type n) BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(fastmod_buckets){
std::size_t s = prime_fmod_size::lower_size_index(n);
return static_cast<SizeType>(prime_fmod_size::size(s));
}
else{
return prime_list_holder<0>::suggested_lower_bucket_count(n);
}
}
const_local_iterator cbegin(size_type n) const BOOST_NOEXCEPT
{
return const_local_iterator
(this->priv_bucket_lbegin(n)
, this->priv_value_traits_ptr());
}
using split_bucket_hash_equal_t::end;
using split_bucket_hash_equal_t::cend;
local_iterator end(size_type n) BOOST_NOEXCEPT
{ return local_iterator(this->priv_bucket_lend(n), this->priv_value_traits_ptr()); }
inline const_local_iterator end(size_type n) const BOOST_NOEXCEPT
{ return this->cend(n); }
const_local_iterator cend(size_type n) const BOOST_NOEXCEPT
{
return const_local_iterator
( this->priv_bucket_lend(n)
, this->priv_value_traits_ptr());
}
//Public functions for hashtable_impl
inline iterator begin() BOOST_NOEXCEPT
{
bucket_ptr p;
siterator s = this->priv_begin(p);
return this->build_iterator(s, p);
}
inline const_iterator begin() const BOOST_NOEXCEPT
{ return this->cbegin(); }
inline const_iterator cbegin() const BOOST_NOEXCEPT
{
bucket_ptr p;
siterator s = this->priv_begin(p);
return this->build_const_iterator(s, p);
}
inline hasher hash_function() const
{ return this->priv_hasher(); }
inline key_equal key_eq() const
{ return this->priv_equal(); }
};
template< class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash
, class VoidOrKeyEqual, class BucketTraits, class SizeType
, std::size_t BoolFlags>
struct get_hashtable_size_wrapper_internal
{
typedef hashtable_size_wrapper
< hashdata_internal
< ValueTraits
, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual
, BucketTraits, SizeType
, BoolFlags & ~(hash_bool_flags::constant_time_size_pos) //1
>
, SizeType
, (BoolFlags& hash_bool_flags::constant_time_size_pos) != 0
> type;
};
/// @endcond
//! The class template hashtable is an intrusive hash table container, that
//! is used to construct intrusive unordered_set and unordered_multiset containers. The
//! no-throw guarantee holds only, if the VoidOrKeyEqual object and Hasher don't throw.
//!
//! hashtable is a semi-intrusive container: each object to be stored in the
//! container must contain a proper hook, but the container also needs
//! additional auxiliary memory to work: hashtable needs a pointer to an array
//! of type `bucket_type` to be passed in the constructor. This bucket array must
//! have at least the same lifetime as the container. This makes the use of
//! hashtable more complicated than purely intrusive containers.
//! `bucket_type` is default-constructible, copyable and assignable
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c constant_time_size<>, \c size_type<>, \c hash<> and \c equal<>
//! \c bucket_traits<>, power_2_buckets<>, cache_begin<> and incremental<>.
//!
//! hashtable only provides forward iterators but it provides 4 iterator types:
//! iterator and const_iterator to navigate through the whole container and
//! local_iterator and const_local_iterator to navigate through the values
//! stored in a single bucket. Local iterators are faster and smaller.
//!
//! It's not recommended to use non constant-time size hashtables because several
//! key functions, like "empty()", become non-constant time functions. Non
//! constant_time size hashtables are mainly provided to support auto-unlink hooks.
//!
//! hashtables, does not make automatic rehashings nor
//! offers functions related to a load factor. Rehashing can be explicitly requested
//! and the user must provide a new bucket array that will be used from that moment.
//!
//! Since no automatic rehashing is done, iterators are never invalidated when
//! inserting or erasing elements. Iterators are only invalidated when rehashing.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
template<class T, class ...Options>
#else
template<class ValueTraits, class VoidOrKeyOfValue, class VoidOrKeyHash, class VoidOrKeyEqual, class BucketTraits, class SizeType, std::size_t BoolFlags>
#endif
class hashtable_impl
: private get_hashtable_size_wrapper_internal
<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual, BucketTraits, SizeType, BoolFlags>::type
{
static const bool linear_buckets_flag = (BoolFlags & hash_bool_flags::linear_buckets_pos) != 0;
typedef typename get_hashtable_size_wrapper_internal
<ValueTraits, VoidOrKeyOfValue, VoidOrKeyHash, VoidOrKeyEqual, BucketTraits, SizeType, BoolFlags>::type
internal_type;
typedef typename internal_type::size_traits size_traits;
typedef hash_key_types_base
< typename ValueTraits::value_type
, VoidOrKeyOfValue
> hash_types_base;
public:
typedef ValueTraits value_traits;
/// @cond
typedef BucketTraits bucket_traits;
typedef bucket_plus_vtraits
<ValueTraits, BucketTraits, linear_buckets_flag> bucket_plus_vtraits_t;
typedef typename bucket_plus_vtraits_t::const_value_traits_ptr const_value_traits_ptr;
typedef detail::bool_<linear_buckets_flag> linear_buckets_t;
typedef typename internal_type::siterator siterator;
typedef typename internal_type::const_siterator const_siterator;
using internal_type::begin;
using internal_type::cbegin;
using internal_type::end;
using internal_type::cend;
using internal_type::hash_function;
using internal_type::key_eq;
using internal_type::bucket_size;
using internal_type::bucket_count;
using internal_type::local_iterator_to;
using internal_type::s_local_iterator_to;
using internal_type::iterator_to;
using internal_type::bucket_pointer;
using internal_type::suggested_upper_bucket_count;
using internal_type::suggested_lower_bucket_count;
using internal_type::split_count;
/// @endcond
typedef typename value_traits::pointer pointer;
typedef typename value_traits::const_pointer const_pointer;
typedef typename value_traits::value_type value_type;
typedef typename hash_types_base::key_type key_type;
typedef typename hash_types_base::key_of_value key_of_value;
typedef typename pointer_traits<pointer>::reference reference;
typedef typename pointer_traits<const_pointer>::reference const_reference;
typedef typename pointer_traits<pointer>::difference_type difference_type;
typedef SizeType size_type;
typedef typename internal_type::key_equal key_equal;
typedef typename internal_type::hasher hasher;
typedef typename internal_type::bucket_type bucket_type;
typedef typename internal_type::bucket_ptr bucket_ptr;
typedef typename internal_type::iterator iterator;
typedef typename internal_type::const_iterator const_iterator;
typedef typename internal_type::local_iterator local_iterator;
typedef typename internal_type::const_local_iterator const_local_iterator;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename pointer_traits
<pointer>::template rebind_pointer
< node >::type node_ptr;
typedef typename pointer_traits
<pointer>::template rebind_pointer
< const node >::type const_node_ptr;
typedef typename pointer_traits
<node_ptr>::reference node_reference;
typedef typename pointer_traits
<const_node_ptr>::reference const_node_reference;
typedef typename internal_type::slist_node_algorithms slist_node_algorithms;
static const bool stateful_value_traits = internal_type::stateful_value_traits;
static const bool store_hash = internal_type::store_hash;
static const bool unique_keys = 0 != (BoolFlags & hash_bool_flags::unique_keys_pos);
static const bool constant_time_size = 0 != (BoolFlags & hash_bool_flags::constant_time_size_pos);
static const bool cache_begin = 0 != (BoolFlags & hash_bool_flags::cache_begin_pos);
static const bool compare_hash = 0 != (BoolFlags & hash_bool_flags::compare_hash_pos);
static const bool incremental = 0 != (BoolFlags & hash_bool_flags::incremental_pos);
static const bool power_2_buckets = incremental || (0 != (BoolFlags & hash_bool_flags::power_2_buckets_pos));
static const bool optimize_multikey = optimize_multikey_is_true<node_traits>::value && !unique_keys;
static const bool linear_buckets = linear_buckets_flag;
static const bool fastmod_buckets = 0 != (BoolFlags & hash_bool_flags::fastmod_buckets_pos);
static const std::size_t bucket_overhead = internal_type::bucket_overhead;
/// @cond
static const bool is_multikey = !unique_keys;
private:
//Configuration error: compare_hash<> can't be specified without store_hash<>
//See documentation for more explanations
BOOST_INTRUSIVE_STATIC_ASSERT((!compare_hash || store_hash));
//Configuration error: fasmod_buckets<> can't be specified with incremental<> or power_2_buckets<>
//See documentation for more explanations
BOOST_INTRUSIVE_STATIC_ASSERT(!(fastmod_buckets && power_2_buckets));
typedef typename internal_type::slist_node_ptr slist_node_ptr;
typedef typename pointer_traits
<slist_node_ptr>::template rebind_pointer
< void >::type void_pointer;
//We'll define group traits, but these won't be instantiated if
//optimize_multikey is not true
typedef unordered_group_adapter<node_traits> group_traits;
typedef circular_slist_algorithms<group_traits> group_algorithms;
typedef typename internal_type::store_hash_t store_hash_t;
typedef detail::bool_<optimize_multikey> optimize_multikey_t;
typedef detail::bool_<cache_begin> cache_begin_t;
typedef detail::bool_<power_2_buckets> power_2_buckets_t;
typedef detail::bool_<fastmod_buckets> fastmod_buckets_t;
typedef detail::bool_<compare_hash> compare_hash_t;
typedef typename internal_type::split_traits split_traits;
typedef group_functions<node_traits> group_functions_t;
typedef node_functions<node_traits> node_functions_t;
private:
//noncopyable, movable
BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable_impl)
static const bool safemode_or_autounlink = internal_type::safemode_or_autounlink;
//Constant-time size is incompatible with auto-unlink hooks!
BOOST_INTRUSIVE_STATIC_ASSERT(!(constant_time_size && ((int)value_traits::link_mode == (int)auto_unlink)));
//Cache begin is incompatible with auto-unlink hooks!
BOOST_INTRUSIVE_STATIC_ASSERT(!(cache_begin && ((int)value_traits::link_mode == (int)auto_unlink)));
/// @endcond
public:
typedef insert_commit_data_impl insert_commit_data;
private:
void default_init_actions()
{
this->priv_set_sentinel_bucket();
this->priv_init_buckets_and_cache();
this->priv_size_count(size_type(0));
size_type bucket_sz = this->bucket_count();
BOOST_INTRUSIVE_INVARIANT_ASSERT(bucket_sz != 0);
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (bucket_sz & (bucket_sz - 1))));
this->split_count(this->initial_split_from_bucket_count(bucket_sz));
}
inline SizeType priv_size_count() const BOOST_NOEXCEPT
{ return this->internal_type::get_hashtable_size_wrapper_size(); }
inline void priv_size_count(SizeType s) BOOST_NOEXCEPT
{ this->internal_type::set_hashtable_size_wrapper_size(s); }
inline void priv_size_inc() BOOST_NOEXCEPT
{ this->internal_type::inc_hashtable_size_wrapper_size(); }
inline void priv_size_dec() BOOST_NOEXCEPT
{ this->internal_type::dec_hashtable_size_wrapper_size(); }
public:
//! <b>Requires</b>: buckets must not be being used by any other resource.
//!
//! <b>Effects</b>: Constructs an empty unordered_set, storing a reference
//! to the bucket array and copies of the key_hasher and equal_func functors.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor or invocation of hash_func or equal_func throws.
//!
//! <b>Notes</b>: buckets array must be disposed only after
//! *this is disposed.
explicit hashtable_impl ( const bucket_traits &b_traits
, const hasher & hash_func = hasher()
, const key_equal &equal_func = key_equal()
, const value_traits &v_traits = value_traits())
: internal_type(v_traits, b_traits, hash_func, equal_func)
{ this->default_init_actions(); }
//! <b>Requires</b>: buckets must not be being used by any other resource
//! and dereferencing iterator must yield an lvalue of type value_type.
//!
//! <b>Effects</b>: Constructs an empty container and inserts elements from
//! [b, e).
//!
//! <b>Complexity</b>: If N is distance(b, e): Average case is O(N)
//! (with a good hash function and with buckets_len >= N),worst case O(N^2).
//!
//! <b>Throws</b>: If value_traits::node_traits::node
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the copy constructor or invocation of hasher or key_equal throws.
//!
//! <b>Notes</b>: buckets array must be disposed only after
//! *this is disposed.
template<class Iterator>
hashtable_impl ( bool unique, Iterator b, Iterator e
, const bucket_traits &b_traits
, const hasher & hash_func = hasher()
, const key_equal &equal_func = key_equal()
, const value_traits &v_traits = value_traits())
: internal_type(v_traits, b_traits, hash_func, equal_func)
{
this->default_init_actions();
//Now insert
if(unique)
this->insert_unique(b, e);
else
this->insert_equal(b, e);
}
//! <b>Effects</b>: Constructs a container moving resources from another container.
//! Internal value traits, bucket traits, hasher and comparison are move constructed and
//! nodes belonging to x are linked to *this.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_traits::node_traits::node's
//! move constructor throws (this does not happen with predefined Boost.Intrusive hooks)
//! or the move constructor of value traits, bucket traits, hasher or comparison throws.
hashtable_impl(BOOST_RV_REF(hashtable_impl) x)
: internal_type(BOOST_MOVE_BASE(internal_type, x))
{
this->priv_swap_cache(x);
x.priv_init_cache();
this->priv_size_count(x.priv_size_count());
x.priv_size_count(size_type(0));
this->split_count(x.split_count());
x.split_count(size_type(0));
}
//! <b>Effects</b>: Equivalent to swap.
//!
hashtable_impl& operator=(BOOST_RV_REF(hashtable_impl) x)
{ this->swap(x); return *this; }
//! <b>Effects</b>: Detaches all elements from this. The objects in the unordered_set
//! are not deleted (i.e. no destructors are called).
//!
//! <b>Complexity</b>: Linear to the number of elements in the unordered_set, if
//! it's a safe-mode or auto-unlink value. Otherwise constant.
//!
//! <b>Throws</b>: Nothing.
~hashtable_impl()
{}
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
iterator begin() BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning
//! of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning
//! of the unordered_set.
//!
//! <b>Complexity</b>: Amortized constant time.
//! Worst case (empty unordered_set): O(this->bucket_count())
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns an iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end() BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns the hasher object used by the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If hasher copy-constructor throws.
hasher hash_function() const;
//! <b>Effects</b>: Returns the key_equal object used by the unordered_set.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If key_equal copy-constructor throws.
key_equal key_eq() const;
#endif
//! <b>Effects</b>: Returns true if the container is empty.
//!
//! <b>Complexity</b>: if constant-time size and cache_begin options are disabled,
//! average constant time (worst case, with empty() == true: O(this->bucket_count()).
//! Otherwise constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(constant_time_size){
return !this->size();
}
else if(cache_begin){
return this->begin() == this->end();
}
else{
size_type bucket_cnt = this->bucket_count();
const bucket_type *b = boost::movelib::to_raw_pointer(this->priv_bucket_pointer());
for (size_type n = 0; n < bucket_cnt; ++n, ++b){
if(!slist_node_algorithms::is_empty(b->get_node_ptr())){
return false;
}
}
return true;
}
}
//! <b>Effects</b>: Returns the number of elements stored in the unordered_set.
//!
//! <b>Complexity</b>: Linear to elements contained in *this if
//! constant_time_size is false. Constant-time otherwise.
//!
//! <b>Throws</b>: Nothing.
size_type size() const BOOST_NOEXCEPT
{
BOOST_IF_CONSTEXPR(constant_time_size)
return this->priv_size_count();
else{
std::size_t len = 0;
std::size_t bucket_cnt = this->bucket_count();
const bucket_type *b = boost::movelib::to_raw_pointer(this->priv_bucket_pointer());
for (std::size_t n = 0; n < bucket_cnt; ++n, ++b){
len += slist_node_algorithms::count(b->get_node_ptr()) - 1u;
}
BOOST_INTRUSIVE_INVARIANT_ASSERT((len <= SizeType(-1)));
return size_type(len);
}
}
//! <b>Requires</b>: the hasher and the equality function unqualified swap
//! call should not throw.
//!
//! <b>Effects</b>: Swaps the contents of two unordered_sets.
//! Swaps also the contained bucket array and equality and hasher functors.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the swap() call for the comparison or hash functors
//! found using ADL throw. Basic guarantee.
void swap(hashtable_impl& other)
{
//These can throw
::boost::adl_move_swap(this->priv_equal(), other.priv_equal());
::boost::adl_move_swap(this->priv_hasher(), other.priv_hasher());
//These can't throw
::boost::adl_move_swap(this->priv_bucket_traits(), other.priv_bucket_traits());
::boost::adl_move_swap(this->priv_value_traits(), other.priv_value_traits());
this->priv_swap_cache(other);
this->priv_size_traits().swap(other.priv_size_traits());
this->priv_split_traits().swap(other.priv_split_traits());
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw
//! Cloner should yield to nodes that compare equal and produce the same
//! hash than the original node.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this. The hash function and the equality
//! predicate are copied from the source.
//!
//! If store_hash option is true, this method does not use the hash function.
//!
//! If any operation throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner or hasher throw or hash or equality predicate copying
//! throws. Basic guarantee.
template <class Cloner, class Disposer>
inline void clone_from(const hashtable_impl &src, Cloner cloner, Disposer disposer)
{ this->priv_clone_from(src, cloner, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw
//! Cloner should yield to nodes that compare equal and produce the same
//! hash than the original node.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(reference)
//! and inserts them on *this. The hash function and the equality
//! predicate are copied from the source.
//!
//! If store_hash option is true, this method does not use the hash function.
//!
//! If any operation throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner or hasher throw or hash or equality predicate copying
//! throws. Basic guarantee.
template <class Cloner, class Disposer>
inline void clone_from(BOOST_RV_REF(hashtable_impl) src, Cloner cloner, Disposer disposer)
{ this->priv_clone_from(static_cast<hashtable_impl&>(src), cloner, disposer); }
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts the value into the unordered_set.
//!
//! <b>Returns</b>: An iterator to the inserted value.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal(reference value)
{
size_type bucket_num;
std::size_t hash_value;
siterator prev;
siterator const it = this->priv_find
(key_of_value()(value), this->priv_hasher(), this->priv_equal(), bucket_num, hash_value, prev);
bool const next_is_in_group = optimize_multikey && it != this->priv_end_sit();
return this->priv_insert_equal_after_find(value, bucket_num, hash_value, prev, next_is_in_group);
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Equivalent to this->insert_equal(t) for each element in [b, e).
//!
//! <b>Complexity</b>: Average case O(N), where N is distance(b, e).
//! Worst case O(N*this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Basic guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_equal(Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert_equal(*b);
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Tries to inserts value into the unordered_set.
//!
//! <b>Returns</b>: If the value
//! is not already present inserts it and returns a pair containing the
//! iterator to the new value and true. If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Strong guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
std::pair<iterator, bool> insert_unique(reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = this->insert_unique_check(key_of_value()(value), commit_data);
if(ret.second){
ret.first = this->insert_unique_fast_commit(value, commit_data);
}
return ret;
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Equivalent to this->insert_unique(t) for each element in [b, e).
//!
//! <b>Complexity</b>: Average case O(N), where N is distance(b, e).
//! Worst case O(N*this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws. Basic guarantee.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_unique(Iterator b, Iterator e)
{
for (; b != e; ++b)
this->insert_unique(*b);
}
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Checks if a value can be inserted in the unordered_set, using
//! a user provided key instead of the value itself.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false. If the value can be inserted returns true in the returned
//! pair boolean and fills "commit_data" that is meant to be used with
//! the "insert_commit" function.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Strong guarantee.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a value_type is expensive: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the hash or the equality is much cheaper to
//! construct than the value_type and this function offers the possibility to
//! use that the part to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the value_type and use
//! "insert_commit" to insert the object in constant-time.
//!
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more
//! objects are inserted or erased from the unordered_set.
//!
//! After a successful rehashing insert_commit_data remains valid.
template<class KeyType, class KeyHasher, class KeyEqual>
std::pair<iterator, bool> insert_unique_check
( const KeyType &key
, KeyHasher hash_func
, KeyEqual equal_func
, insert_commit_data &commit_data)
{
const std::size_t h = hash_func(key);
const std::size_t bn = this->priv_hash_to_nbucket(h);
commit_data.bucket_idx = bn;
commit_data.set_hash(h);
bucket_ptr bp = this->priv_bucket_ptr(bn);
siterator const s = this->priv_find_in_bucket(*bp, key, equal_func, h);
return std::pair<iterator, bool>(this->build_iterator(s, bp), s == this->priv_end_sit());
}
//! <b>Effects</b>: Checks if a value can be inserted in the unordered_set, using
//! a user provided key instead of the value itself.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing an iterator to the already present value
//! and false. If the value can be inserted returns true in the returned
//! pair boolean and fills "commit_data" that is meant to be used with
//! the "insert_commit" function.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hasher or key_compare throw. Strong guarantee.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a value_type is expensive: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the hash or the equality is much cheaper to
//! construct than the value_type and this function offers the possibility to
//! use that the part to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the value_type and use
//! "insert_commit" to insert the object in constant-time.
//!
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more
//! objects are inserted or erased from the unordered_set.
//!
//! After a successful rehashing insert_commit_data remains valid.
inline std::pair<iterator, bool> insert_unique_check
( const key_type &key, insert_commit_data &commit_data)
{ return this->insert_unique_check(key, this->priv_hasher(), this->priv_equal(), commit_data); }
//! <b>Requires</b>: value must be an lvalue of type value_type. commit_data
//! must have been obtained from a previous call to "insert_check".
//! No objects should have been inserted or erased from the unordered_set between
//! the "insert_check" that filled "commit_data" and the call to "insert_commit".
//!
//! <b>Effects</b>: Inserts the value in the unordered_set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Returns</b>: An iterator to the newly inserted object.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
//!
//! After a successful rehashing insert_commit_data remains valid.
iterator insert_unique_commit(reference value, const insert_commit_data& commit_data) BOOST_NOEXCEPT
{
size_type bucket_num = this->priv_hash_to_nbucket(commit_data.get_hash());
bucket_type& b = this->priv_bucket(bucket_num);
this->priv_size_traits().increment();
node_ptr const n = pointer_traits<node_ptr>::pointer_to(this->priv_value_to_node(value));
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || slist_node_algorithms::unique(n));
node_functions_t::store_hash(n, commit_data.get_hash(), store_hash_t());
this->priv_insertion_update_cache(bucket_num);
group_functions_t::insert_in_group(n, n, optimize_multikey_t());
slist_node_algorithms::link_after(b.get_node_ptr(), n);
return this->build_iterator(siterator(n), this->to_ptr(b));
}
//! <b>Requires</b>: value must be an lvalue of type value_type. commit_data
//! must have been obtained from a previous call to "insert_check".
//! No objects should have been inserted or erased from the unordered_set between
//! the "insert_check" that filled "commit_data" and the call to "insert_commit".
//!
//! No rehashing shall be performed between `insert_check` and `insert_fast_commit`.
//!
//! <b>Effects</b>: Inserts the value in the unordered_set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Returns</b>: An iterator to the newly inserted object.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
//!
//! Since this commit operation does not support rehashing between the check
//! and the commit, it's faster than `insert_commit`.
iterator insert_unique_fast_commit(reference value, const insert_commit_data &commit_data) BOOST_NOEXCEPT
{
this->priv_size_inc();
node_ptr const n = this->priv_value_to_node_ptr(value);
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || slist_node_algorithms::unique(n));
node_functions_t::store_hash(n, commit_data.get_hash(), store_hash_t());
this->priv_insertion_update_cache(static_cast<size_type>(commit_data.bucket_idx));
group_functions_t::insert_in_group(n, n, optimize_multikey_t());
bucket_type& b = this->priv_bucket(commit_data.bucket_idx);
slist_node_algorithms::link_after(b.get_node_ptr(), n);
return this->build_iterator(siterator(n), this->to_ptr(b));
}
//! <b>Effects</b>: Erases the element pointed to by i.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased element. No destructors are called.
inline void erase(const_iterator i) BOOST_NOEXCEPT
{ this->erase_and_dispose(i, detail::null_disposer()); }
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Complexity</b>: Average case O(distance(b, e)),
//! worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
inline void erase(const_iterator b, const_iterator e) BOOST_NOEXCEPT
{ this->erase_and_dispose(b, e, detail::null_disposer()); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
//! Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
inline size_type erase(const key_type &key)
{ return this->erase(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Erases all the elements that have the same hash and
//! compare equal with the given key.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyHasher, class KeyEqual>
inline size_type erase(const KeyType& key, KeyHasher hash_func, KeyEqual equal_func)
{ return this->erase_and_dispose(key, hash_func, equal_func, detail::null_disposer()); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed to by i.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
BOOST_INTRUSIVE_DOC1ST(void
, typename detail::disable_if_convertible<Disposer BOOST_INTRUSIVE_I const_iterator>::type)
erase_and_dispose(const_iterator i, Disposer disposer) BOOST_NOEXCEPT
{
//Get the bucket number and local iterator for both iterators
const bucket_ptr bp = this->priv_get_bucket_ptr(i);
this->priv_erase_node(*bp, i.slist_it(), this->make_node_disposer(disposer), optimize_multikey_t());
this->priv_size_dec();
this->priv_erasure_update_cache(bp);
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Complexity</b>: Average case O(distance(b, e)),
//! worst case O(this->size()).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
void erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) BOOST_NOEXCEPT
{
if(b != e){
//Get the bucket number and local iterator for both iterators
size_type first_bucket_num = this->priv_get_bucket_num(b);
siterator before_first_local_it
= this->priv_get_previous(this->priv_bucket(first_bucket_num), b.slist_it(), optimize_multikey_t());
size_type last_bucket_num;
siterator last_local_it;
//For the end iterator, we will assign the end iterator
//of the last bucket
if(e == this->end()){
last_bucket_num = size_type(this->bucket_count() - 1u);
last_local_it = this->sit_end(this->priv_bucket(last_bucket_num));
}
else{
last_local_it = e.slist_it();
last_bucket_num = this->priv_get_bucket_num(e);
}
size_type const num_erased = (size_type)this->priv_erase_node_range
( before_first_local_it, first_bucket_num, last_local_it, last_bucket_num
, this->make_node_disposer(disposer), optimize_multikey_t());
this->priv_size_count(size_type(this->priv_size_count()-num_erased));
this->priv_erasure_update_cache_range(first_bucket_num, last_bucket_num);
}
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given value.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
//! Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
inline size_type erase_and_dispose(const key_type &key, Disposer disposer)
{ return this->erase_and_dispose(key, this->priv_hasher(), this->priv_equal(), disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "equal_func".
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: Average case O(this->count(value)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw. Basic guarantee.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class KeyType, class KeyHasher, class KeyEqual, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyHasher hash_func
,KeyEqual equal_func, Disposer disposer)
{
size_type bucket_num;
std::size_t h;
siterator prev;
siterator it = this->priv_find(key, hash_func, equal_func, bucket_num, h, prev);
bool const success = it != this->priv_end_sit();
std::size_t cnt(0);
if(success){
if(optimize_multikey){
siterator past_last_in_group = it;
(priv_go_to_last_in_group)(past_last_in_group, optimize_multikey_t());
++past_last_in_group;
cnt = this->priv_erase_from_single_bucket
( this->priv_bucket(bucket_num), prev
, past_last_in_group
, this->make_node_disposer(disposer), optimize_multikey_t());
}
else{
siterator const end_sit = this->priv_bucket_lend(bucket_num);
do{
++cnt;
++it;
}while(it != end_sit &&
this->priv_is_value_equal_to_key
(this->priv_value_from_siterator(it), h, key, equal_func, compare_hash_t()));
slist_node_algorithms::unlink_after_and_dispose(prev.pointed_node(), it.pointed_node(), this->make_node_disposer(disposer));
}
this->priv_size_count(size_type(this->priv_size_count()-cnt));
this->priv_erasure_update_cache();
}
return static_cast<size_type>(cnt);
}
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear() BOOST_NOEXCEPT
{
this->priv_clear_buckets_and_cache();
this->priv_size_count(size_type(0));
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
void clear_and_dispose(Disposer disposer) BOOST_NOEXCEPT
{
if(!constant_time_size || !this->empty()){
size_type num_buckets = this->bucket_count();
bucket_ptr b = this->priv_bucket_pointer();
typename internal_type::template typeof_node_disposer<Disposer>::type d(disposer, &this->priv_value_traits());
for(; num_buckets; ++b){
--num_buckets;
slist_node_algorithms::detach_and_dispose(b->get_node_ptr(), d);
}
this->priv_size_count(size_type(0));
}
this->priv_init_cache();
}
//! <b>Effects</b>: Returns the number of contained elements with the given value
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
inline size_type count(const key_type &key) const
{ return this->count(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal throw.
template<class KeyType, class KeyHasher, class KeyEqual>
size_type count(const KeyType &key, KeyHasher hash_func, KeyEqual equal_func) const
{
size_type cnt;
size_type n_bucket;
this->priv_local_equal_range(key, hash_func, equal_func, n_bucket, cnt);
return cnt;
}
//! <b>Effects</b>: Finds an iterator to the first element is equal to
//! "value" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
inline iterator find(const key_type &key)
{ return this->find(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the given hash and equality functor or end() if
//! that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyEqual>
iterator find(const KeyType &key, KeyHasher hash_func, KeyEqual equal_func)
{
std::size_t h = hash_func(key);
bucket_ptr bp = this->priv_hash_to_bucket_ptr(h);
siterator s = this->priv_find_in_bucket(*bp, key, equal_func, h);
return this->build_iterator(s, bp);
}
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! "key" or end() if that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
inline const_iterator find(const key_type &key) const
{ return this->find(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! "key" according to the given hasher and equality functor or end() if
//! that element does not exist.
//!
//! <b>Complexity</b>: Average case O(1), worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyEqual>
const_iterator find
(const KeyType &key, KeyHasher hash_func, KeyEqual equal_func) const
{
std::size_t h = hash_func(key);
bucket_ptr bp = this->priv_hash_to_bucket_ptr(h);
siterator s = this->priv_find_in_bucket(*bp, key, equal_func, h);
return this->build_const_iterator(s, bp);
}
//! <b>Effects</b>: Returns a range containing all elements with values equivalent
//! to value. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(value)). Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
inline std::pair<iterator,iterator> equal_range(const key_type &key)
{ return this->equal_range(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns a range containing all elements with equivalent
//! keys. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(key, hash_func, equal_func)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If hash_func or the equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyEqual>
std::pair<iterator,iterator> equal_range
(const KeyType &key, KeyHasher hash_func, KeyEqual equal_func)
{
priv_equal_range_result ret =
this->priv_equal_range(key, hash_func, equal_func);
return std::pair<iterator, iterator>
( this->build_iterator(ret.first, ret.bucket_first)
, this->build_iterator(ret.second, ret.bucket_second));
}
//! <b>Effects</b>: Returns a range containing all elements with values equivalent
//! to value. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(value)). Worst case O(this->size()).
//!
//! <b>Throws</b>: If the internal hasher or the equality functor throws.
inline std::pair<const_iterator, const_iterator>
equal_range(const key_type &key) const
{ return this->equal_range(key, this->priv_hasher(), this->priv_equal()); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! "equal_func" must be a equality function that induces
//! the same equality as key_equal. The difference is that
//! "equal_func" compares an arbitrary key with the contained values.
//!
//! <b>Effects</b>: Returns a range containing all elements with equivalent
//! keys. Returns std::make_pair(this->end(), this->end()) if no such
//! elements exist.
//!
//! <b>Complexity</b>: Average case O(this->count(key, hash_func, equal_func)).
//! Worst case O(this->size()).
//!
//! <b>Throws</b>: If the hasher or equal_func throw.
//!
//! <b>Note</b>: This function is used when constructing a value_type
//! is expensive and the value_type can be compared with a cheaper
//! key type. Usually this key is part of the value_type.
template<class KeyType, class KeyHasher, class KeyEqual>
std::pair<const_iterator,const_iterator> equal_range
(const KeyType &key, KeyHasher hash_func, KeyEqual equal_func) const
{
priv_equal_range_result ret =
this->priv_equal_range(key, hash_func, equal_func);
return std::pair<const_iterator, const_iterator>
( this->build_const_iterator(ret.first, ret.bucket_first)
, this->build_const_iterator(ret.second, ret.bucket_second));
}
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the internal hash function throws.
iterator iterator_to(reference value) BOOST_NOEXCEPT;
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator belonging to the
//! unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the internal hash function throws.
const_iterator iterator_to(const_reference value) const BOOST_NOEXCEPT;
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid local_iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static local_iterator s_local_iterator_to(reference value) BOOST_NOEXCEPT;
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_local_iterator belonging to
//! the unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static const_local_iterator s_local_iterator_to(const_reference value) BOOST_NOEXCEPT;
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid local_iterator belonging to the unordered_set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
local_iterator local_iterator_to(reference value) BOOST_NOEXCEPT;
//! <b>Requires</b>: value must be an lvalue and shall be in a unordered_set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_local_iterator belonging to
//! the unordered_set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_local_iterator local_iterator_to(const_reference value) const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns the number of buckets passed in the constructor
//! or the last rehash function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
size_type bucket_count() const BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns the number of elements in the nth bucket.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
size_type bucket_size(size_type n) const BOOST_NOEXCEPT;
#endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Effects</b>: Returns the index of the bucket in which elements
//! with keys equivalent to k would be found, if any such element existed.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the hash functor throws.
//!
//! <b>Note</b>: the return value is in the range [0, this->bucket_count()).
inline size_type bucket(const key_type& k) const
{ return this->priv_hash_to_nbucket(this->priv_hash(k)); }
//! <b>Requires</b>: "hash_func" must be a hash function that induces
//! the same hash values as the stored hasher. The difference is that
//! "hash_func" hashes the given key instead of the value_type.
//!
//! <b>Effects</b>: Returns the index of the bucket in which elements
//! with keys equivalent to k would be found, if any such element existed.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If hash_func throws.
//!
//! <b>Note</b>: the return value is in the range [0, this->bucket_count()).
template<class KeyType, class KeyHasher>
inline size_type bucket(const KeyType& k, KeyHasher hash_func) const
{ return this->priv_hash_to_nbucket(hash_func(k)); }
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Effects</b>: Returns the bucket array pointer passed in the constructor
//! or the last rehash function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bucket_ptr bucket_pointer() const BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
local_iterator begin(size_type n) BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator begin(size_type n) const BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the beginning
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator cbegin(size_type n) const BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
local_iterator end(size_type n) BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator end(size_type n) const BOOST_NOEXCEPT;
//! <b>Requires</b>: n is in the range [0, this->bucket_count()).
//!
//! <b>Effects</b>: Returns a const_local_iterator pointing to the end
//! of the sequence stored in the bucket n.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: [this->begin(n), this->end(n)) is a valid range
//! containing all of the elements in the nth bucket.
const_local_iterator cend(size_type n) const BOOST_NOEXCEPT;
#endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: new_bucket_traits can hold a pointer to a new bucket array
//! or the same as the old bucket array with a different length. new_size is the length of the
//! the array pointed by new_buckets. If new_bucket_traits.bucket_begin() == this->bucket_pointer()
//! new_bucket_traits.bucket_count() can be bigger or smaller than this->bucket_count().
//! 'new_bucket_traits' copy constructor should not throw.
//!
//! <b>Effects</b>:
//! If `new_bucket_traits.bucket_begin() == this->bucket_pointer()` is false,
//! unlinks values from the old bucket and inserts then in the new one according
//! to the hash value of values.
//!
//! If `new_bucket_traits.bucket_begin() == this->bucket_pointer()` is true,
//! the implementations avoids moving values as much as possible.
//!
//! Bucket traits hold by *this is assigned from new_bucket_traits.
//! If the container is configured as incremental<>, the split bucket is set
//! to the new bucket_count().
//!
//! If store_hash option is true, this method does not use the hash function.
//! If false, the implementation tries to minimize calls to the hash function
//! (e.g. once for equivalent values if optimize_multikey<true> is true).
//!
//! If rehash is successful updates the internal bucket_traits with new_bucket_traits.
//!
//! <b>Complexity</b>: Average case linear in this->size(), worst case quadratic.
//!
//! <b>Throws</b>: If the hasher functor throws. Basic guarantee.
inline void rehash(const bucket_traits &new_bucket_traits)
{ this->priv_rehash_impl(new_bucket_traits, false); }
//! <b>Note</b>: This function is used when keys from inserted elements are changed
//! (e.g. a language change when key is a string) but uniqueness and hash properties are
//! preserved so a fast full rehash recovers invariants for *this without extracting and
//! reinserting all elements again.
//!
//! <b>Requires</b>: Calls produced to the hash function should not alter the value uniqueness
//! properties of already inserted elements. If hasher(key1) == hasher(key2) was true when
//! elements were inserted, it shall be true during calls produced in the execution of this function.
//!
//! key_equal is not called inside this function so it is assumed that key_equal(value1, value2)
//! should produce the same results as before for inserted elements.
//!
//! <b>Effects</b>: Reprocesses all values hold by *this, recalculating their hash values
//! and redistributing them though the buckets.
//!
//! If store_hash option is true, this method uses the hash function and updates the stored hash value.
//!
//! <b>Complexity</b>: Average case linear in this->size(), worst case quadratic.
//!
//! <b>Throws</b>: If the hasher functor throws. Basic guarantee.
inline void full_rehash()
{ this->priv_rehash_impl(this->priv_bucket_traits(), true); }
//! <b>Requires</b>:
//!
//! <b>Effects</b>:
//!
//! <b>Complexity</b>:
//!
//! <b>Throws</b>:
//!
//! <b>Note</b>: this method is only available if incremental<true> option is activated.
bool incremental_rehash(bool grow = true)
{
//This function is only available for containers with incremental hashing
BOOST_INTRUSIVE_STATIC_ASSERT(( incremental && power_2_buckets ));
const std::size_t split_idx = this->split_count();
const std::size_t bucket_cnt = this->bucket_count();
bool ret = false;
if(grow){
//Test if the split variable can be changed
if((ret = split_idx < bucket_cnt)){
const std::size_t bucket_to_rehash = split_idx - bucket_cnt/2u;
bucket_type &old_bucket = this->priv_bucket(bucket_to_rehash);
this->inc_split_count();
//Anti-exception stuff: if an exception is thrown while
//moving elements from old_bucket to the target bucket, all moved
//elements are moved back to the original one.
incremental_rehash_rollback<bucket_type, split_traits, slist_node_algorithms> rollback
( this->priv_bucket(split_idx), old_bucket, this->priv_split_traits());
siterator before_i(old_bucket.get_node_ptr());
siterator i(before_i); ++i;
siterator end_sit = linear_buckets ? siterator() : before_i;
for( ; i != end_sit; i = before_i, ++i){
const value_type &v = this->priv_value_from_siterator(i);
const std::size_t hash_value = this->priv_stored_or_compute_hash(v, store_hash_t());
const std::size_t new_n = this->priv_hash_to_nbucket(hash_value);
siterator last = i;
(priv_go_to_last_in_group)(last, optimize_multikey_t());
if(new_n == bucket_to_rehash){
before_i = last;
}
else{
bucket_type &new_b = this->priv_bucket(new_n);
slist_node_algorithms::transfer_after(new_b.get_node_ptr(), before_i.pointed_node(), last.pointed_node());
}
}
rollback.release();
this->priv_erasure_update_cache();
}
}
else if((ret = split_idx > bucket_cnt/2u)){ //!grow
const std::size_t target_bucket_num = split_idx - 1u - bucket_cnt/2u;
bucket_type &target_bucket = this->priv_bucket(target_bucket_num);
bucket_type &source_bucket = this->priv_bucket(split_idx-1u);
slist_node_algorithms::transfer_after(target_bucket.get_node_ptr(), source_bucket.get_node_ptr());
this->dec_split_count();
this->priv_insertion_update_cache(target_bucket_num);
}
return ret;
}
//! <b>Effects</b>: If new_bucket_traits.bucket_count() is not
//! this->bucket_count()/2 or this->bucket_count()*2, or
//! this->split_bucket() != new_bucket_traits.bucket_count() returns false
//! and does nothing.
//!
//! Otherwise, copy assigns new_bucket_traits to the internal bucket_traits
//! and transfers all the objects from old buckets to the new ones.
//!
//! <b>Complexity</b>: Linear to size().
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Note</b>: this method is only available if incremental<true> option is activated.
bool incremental_rehash(const bucket_traits &new_bucket_traits) BOOST_NOEXCEPT
{
//This function is only available for containers with incremental hashing
BOOST_INTRUSIVE_STATIC_ASSERT(( incremental && power_2_buckets ));
const bucket_ptr new_buckets = new_bucket_traits.bucket_begin();
const size_type new_bucket_count_stdszt = static_cast<SizeType>(new_bucket_traits.bucket_count() - bucket_overhead);
BOOST_INTRUSIVE_INVARIANT_ASSERT(sizeof(size_type) >= sizeof(std::size_t) || new_bucket_count_stdszt <= size_type(-1));
size_type new_bucket_count = static_cast<size_type>(new_bucket_count_stdszt);
const size_type old_bucket_count = static_cast<size_type>(this->priv_usable_bucket_count());
const size_type split_idx = this->split_count();
//Test new bucket size is consistent with internal bucket size and split count
if(new_bucket_count/2 == old_bucket_count){
if(!(split_idx >= old_bucket_count))
return false;
}
else if(new_bucket_count == old_bucket_count/2){
if(!(split_idx <= new_bucket_count))
return false;
}
else{
return false;
}
const size_type ini_n = (size_type)this->priv_get_cache_bucket_num();
const bucket_ptr old_buckets = this->priv_bucket_pointer();
this->priv_unset_sentinel_bucket();
this->priv_initialize_new_buckets(old_buckets, old_bucket_count, new_buckets, new_bucket_count);
if (&new_bucket_traits != &this->priv_bucket_traits())
this->priv_bucket_traits() = new_bucket_traits;
if(old_buckets != new_buckets){
for(size_type n = ini_n; n < split_idx; ++n){
slist_node_ptr new_bucket_nodeptr = new_bucket_traits.bucket_begin()[difference_type(n)].get_node_ptr();
slist_node_ptr old_bucket_node_ptr = old_buckets[difference_type(n)].get_node_ptr();
slist_node_algorithms::transfer_after(new_bucket_nodeptr, old_bucket_node_ptr);
}
//Reset cache to safe position
this->priv_set_cache_bucket_num(ini_n);
}
this->priv_set_sentinel_bucket();
return true;
}
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
//! <b>Requires</b>: incremental<> option must be set
//!
//! <b>Effects</b>: returns the current split count
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: Nothing
size_type split_count() const BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns the nearest new bucket count optimized for
//! the container that is bigger or equal than n. This suggestion can be
//! used to create bucket arrays with a size that will usually improve
//! container's performance. If such value does not exist, the
//! higher possible value is returned.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static size_type suggested_upper_bucket_count(size_type n) BOOST_NOEXCEPT;
//! <b>Effects</b>: Returns the nearest new bucket count optimized for
//! the container that is smaller or equal than n. This suggestion can be
//! used to create bucket arrays with a size that will usually improve
//! container's performance. If such value does not exist, the
//! lowest possible value is returned.
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static size_type suggested_lower_bucket_count(size_type n) BOOST_NOEXCEPT;
#endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
friend bool operator==(const hashtable_impl &x, const hashtable_impl &y)
{
//Taken from N3068
if(constant_time_size && x.size() != y.size()){
return false;
}
if (boost::intrusive::iterator_udistance(x.begin(), x.end()) != x.size())
return false;
for (const_iterator ix = x.cbegin(), ex = x.cend(); ix != ex; ++ix){
std::pair<const_iterator, const_iterator> eqx(x.equal_range(key_of_value()(*ix))),
eqy(y.equal_range(key_of_value()(*ix)));
if (boost::intrusive::iterator_distance(eqx.first, eqx.second) !=
boost::intrusive::iterator_distance(eqy.first, eqy.second) ||
!(priv_algo_is_permutation)(eqx.first, eqx.second, eqy.first) ){
return false;
}
ix = eqx.second;
}
return true;
}
friend bool operator!=(const hashtable_impl &x, const hashtable_impl &y)
{ return !(x == y); }
friend bool operator<(const hashtable_impl &x, const hashtable_impl &y)
{ return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
friend bool operator>(const hashtable_impl &x, const hashtable_impl &y)
{ return y < x; }
friend bool operator<=(const hashtable_impl &x, const hashtable_impl &y)
{ return !(y < x); }
friend bool operator>=(const hashtable_impl &x, const hashtable_impl &y)
{ return !(x < y); }
/// @cond
inline void check() const {}
private:
static void priv_initialize_new_buckets
( bucket_ptr old_buckets, size_type old_bucket_count
, bucket_ptr new_buckets, size_type new_bucket_count)
{
//Initialize new buckets
const bool same_buffer = old_buckets == new_buckets;
if (same_buffer && new_bucket_count <= old_bucket_count) {
//Nothing to do here
}
else {
bucket_ptr p;
size_type c;
if (same_buffer) {
p = old_buckets + std::ptrdiff_t(old_bucket_count);
c = size_type(new_bucket_count - old_bucket_count);
}
else {
p = new_buckets;
c = new_bucket_count;
}
internal_type::priv_init_buckets(p, c);
}
}
void priv_rehash_impl(const bucket_traits &new_bucket_traits, bool do_full_rehash)
{
const std::size_t nbc = new_bucket_traits.bucket_count() - bucket_overhead;
BOOST_INTRUSIVE_INVARIANT_ASSERT(sizeof(SizeType) >= sizeof(std::size_t) || nbc <= SizeType(-1));
const bucket_ptr new_buckets = new_bucket_traits.bucket_begin();
const size_type new_bucket_count = static_cast<SizeType>(nbc);
const bucket_ptr old_buckets = this->priv_bucket_pointer();
const size_type old_bucket_count = this->bucket_count();
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (new_bucket_count & (new_bucket_count-1u))));
const bool same_buffer = old_buckets == new_buckets;
//If the new bucket length is a common factor
//of the old one we can avoid hash calculations.
const bool fast_shrink = (!do_full_rehash) && (!incremental) && (old_bucket_count >= new_bucket_count) &&
(power_2_buckets || (old_bucket_count % new_bucket_count) == 0);
//If we are shrinking the same bucket array and it's
//is a fast shrink, just rehash the last nodes
size_type new_first_bucket_num = new_bucket_count;
size_type old_bucket_cache = (size_type)this->priv_get_cache_bucket_num();
if(same_buffer && fast_shrink && (old_bucket_cache < new_bucket_count)){
new_first_bucket_num = old_bucket_cache;
old_bucket_cache = new_bucket_count;
}
if (!do_full_rehash)
this->priv_initialize_new_buckets(old_buckets, old_bucket_count, new_buckets, new_bucket_count);
//Anti-exception stuff: they destroy the elements if something goes wrong.
//If the source and destination buckets are the same, the second rollback function
//is harmless, because all elements have been already unlinked and destroyed
typedef typename internal_type::template typeof_node_disposer<detail::null_disposer>::type NodeDisposer;
typedef exception_bucket_disposer<bucket_type, slist_node_algorithms, NodeDisposer, size_type> ArrayDisposer;
NodeDisposer nd(this->make_node_disposer(detail::null_disposer()));
ArrayDisposer rollback1(new_buckets[0], nd, new_bucket_count);
ArrayDisposer rollback2(old_buckets[0], nd, old_bucket_count);
//Put size in a safe value for rollback exception
size_type const size_backup = this->priv_size_count();
this->priv_size_count(0);
//Put cache to safe position
this->priv_init_cache();
this->priv_unset_sentinel_bucket();
const size_type split = this->rehash_split_from_bucket_count(new_bucket_count);
//Iterate through nodes
for(size_type n = old_bucket_cache; n < old_bucket_count; ++n){
bucket_type &old_bucket = old_buckets[difference_type(n)];
if(!fast_shrink){
siterator before_i(old_bucket.get_node_ptr());
siterator i(before_i); ++i;
siterator end_sit(this->sit_end(old_bucket));
for( //
; i != end_sit
; i = before_i, ++i){
//First obtain hash value (and store it if do_full_rehash)
std::size_t hash_value;
if(do_full_rehash){
value_type &v = this->priv_value_from_siterator(i);
hash_value = this->priv_hasher()(key_of_value()(v));
node_functions_t::store_hash(this->priv_value_to_node_ptr(v), hash_value, store_hash_t());
}
else{
const value_type &v = this->priv_value_from_siterator(i);
hash_value = this->priv_stored_or_compute_hash(v, store_hash_t());
}
//Now calculate the new bucket position
const size_type new_n = (size_type)hash_to_bucket_split<power_2_buckets, incremental>
(hash_value, new_bucket_count, split, fastmod_buckets_t());
//Update first used bucket cache
if(cache_begin && new_n < new_first_bucket_num)
new_first_bucket_num = new_n;
//If the target bucket is new, transfer the whole group
siterator last = i;
(priv_go_to_last_in_group)(i, optimize_multikey_t());
if(same_buffer && new_n == n){
before_i = last;
}
else{
bucket_type &new_b = new_buckets[difference_type(new_n)];
slist_node_algorithms::transfer_after(new_b.get_node_ptr(), before_i.pointed_node(), last.pointed_node());
}
}
}
else{
const size_type new_n = (size_type)hash_to_bucket_split<power_2_buckets, incremental>
(n, new_bucket_count, split, fastmod_buckets_t());
if(cache_begin && new_n < new_first_bucket_num)
new_first_bucket_num = new_n;
bucket_type &new_b = new_buckets[difference_type(new_n)];
siterator last = this->priv_get_last(old_bucket, optimize_multikey_t());
slist_node_algorithms::transfer_after(new_b.get_node_ptr(), old_bucket.get_node_ptr(), last.pointed_node());
}
}
this->priv_size_count(size_backup);
this->split_count(split);
if(&new_bucket_traits != &this->priv_bucket_traits())
this->priv_bucket_traits() = new_bucket_traits;
this->priv_set_sentinel_bucket();
this->priv_set_cache_bucket_num(new_first_bucket_num);
rollback1.release();
rollback2.release();
}
template <class MaybeConstHashtableImpl, class Cloner, class Disposer>
void priv_clone_from(MaybeConstHashtableImpl &src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
if(!constant_time_size || !src.empty()){
const size_type src_bucket_count = src.bucket_count();
const size_type dst_bucket_count = this->bucket_count();
//Check power of two bucket array if the option is activated
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (src_bucket_count & (src_bucket_count-1))));
BOOST_INTRUSIVE_INVARIANT_ASSERT
(!power_2_buckets || (0 == (dst_bucket_count & (dst_bucket_count-1))));
//If src bucket count is bigger or equal, structural copy is possible
const bool structural_copy = (!incremental) && (src_bucket_count >= dst_bucket_count) &&
(power_2_buckets || (src_bucket_count % dst_bucket_count) == 0);
if(structural_copy){
this->priv_structural_clone_from(src, cloner, disposer);
}
else{
//Unlike previous cloning algorithm, this can throw
//if cloner, hasher or comparison functor throw
typedef typename detail::if_c< detail::is_const<MaybeConstHashtableImpl>::value
, typename MaybeConstHashtableImpl::const_iterator
, typename MaybeConstHashtableImpl::iterator
>::type clone_iterator;
clone_iterator b(src.begin()), e(src.end());
detail::exception_disposer<hashtable_impl, Disposer> rollback(*this, disposer);
for(; b != e; ++b){
//No need to check for duplicates and insert it in the first position
//as this is an unordered container. So use minimal insertion code
std::size_t const hash_to_store = this->priv_stored_or_compute_hash(*b, store_hash_t());
size_type const bucket_number = this->priv_hash_to_nbucket(hash_to_store);
typedef typename detail::if_c
<detail::is_const<MaybeConstHashtableImpl>::value, const_reference, reference>::type reference_type;
reference_type r = *b;
this->priv_clone_front_in_bucket<reference_type>(bucket_number, r, hash_to_store, cloner);
}
rollback.release();
}
}
}
template<class ValueReference, class Cloner>
void priv_clone_front_in_bucket( size_type const bucket_number
, typename detail::identity<ValueReference>::type src_ref
, std::size_t const hash_to_store, Cloner cloner)
{
//No need to check for duplicates and insert it in the first position
//as this is an unordered container. So use minimal insertion code
bucket_type &cur_bucket = this->priv_bucket(bucket_number);
siterator const prev(cur_bucket.get_node_ptr());
//Just check if the cloned node is equal to the first inserted value in the new bucket
//as equal src values were contiguous and they should be already inserted in the
//destination bucket.
bool const next_is_in_group = optimize_multikey && !this->priv_bucket_empty(bucket_number) &&
this->priv_equal()( key_of_value()(src_ref)
, key_of_value()(this->priv_value_from_siterator(++siterator(prev))));
this->priv_insert_equal_after_find(*cloner(src_ref), bucket_number, hash_to_store, prev, next_is_in_group);
}
template <class MaybeConstHashtableImpl, class Cloner, class Disposer>
void priv_structural_clone_from(MaybeConstHashtableImpl &src, Cloner cloner, Disposer disposer)
{
//First clone the first ones
const size_type src_bucket_count = src.bucket_count();
const size_type dst_bucket_count = this->bucket_count();
size_type constructed = 0;
typedef typename internal_type::template typeof_node_disposer<Disposer>::type NodeDisposer;
NodeDisposer node_disp(disposer, &this->priv_value_traits());
exception_bucket_disposer<bucket_type, slist_node_algorithms, NodeDisposer, size_type>
rollback(this->priv_bucket(0), node_disp, constructed);
//Now insert the remaining ones using the modulo trick
for( //"constructed" already initialized
; constructed < src_bucket_count
; ++constructed){
const size_type new_n = (size_type)hash_to_bucket_split<power_2_buckets, incremental>
(constructed, dst_bucket_count, this->split_count(), fastmod_buckets_t());
bucket_type &src_b = src.priv_bucket(constructed);
for( siterator b(this->priv_bucket_lbegin(src_b)), e(this->priv_bucket_lend(src_b)); b != e; ++b){
typedef typename detail::if_c
<detail::is_const<MaybeConstHashtableImpl>::value, const_reference, reference>::type reference_type;
reference_type r = this->priv_value_from_siterator(b);
this->priv_clone_front_in_bucket<reference_type>
(new_n, r, this->priv_stored_hash(b, store_hash_t()), cloner);
}
}
this->priv_hasher() = src.priv_hasher();
this->priv_equal() = src.priv_equal();
rollback.release();
this->priv_size_count(src.priv_size_count());
this->split_count(dst_bucket_count);
this->priv_set_cache_bucket_num(0u);
this->priv_erasure_update_cache();
}
iterator priv_insert_equal_after_find(reference value, size_type bucket_num, std::size_t hash_value, siterator prev, bool const next_is_in_group)
{
//Now store hash if needed
node_ptr n = this->priv_value_to_node_ptr(value);
node_functions_t::store_hash(n, hash_value, store_hash_t());
//Checks for some modes
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || slist_node_algorithms::unique(n));
//Shortcut to optimize_multikey cases
group_functions_t::insert_in_group
( next_is_in_group ? dcast_bucket_ptr<node>((++siterator(prev)).pointed_node()) : n
, n, optimize_multikey_t());
//Update cache and increment size if needed
this->priv_insertion_update_cache(bucket_num);
this->priv_size_inc();
slist_node_algorithms::link_after(prev.pointed_node(), n);
return this->build_iterator(siterator(n), this->priv_bucket_ptr(bucket_num));
}
template<class KeyType, class KeyHasher, class KeyEqual>
siterator priv_find //In case it is not found previt is priv_end_sit()
( const KeyType &key, KeyHasher hash_func
, KeyEqual equal_func, size_type &bucket_number, std::size_t &h, siterator &previt) const
{
h = hash_func(key);
bucket_number = this->priv_hash_to_nbucket(h);
bucket_type& b = this->priv_bucket(bucket_number);
siterator prev = this->sit_bbegin(b);
siterator it = prev;
siterator const endit = this->sit_end(b);
while (++it != endit) {
if (this->priv_is_value_equal_to_key
(this->priv_value_from_siterator(it), h, key, equal_func, compare_hash_t())) {
previt = prev;
return it;
}
(priv_go_to_last_in_group)(it, optimize_multikey_t());
prev = it;
}
previt = b.get_node_ptr();
return this->priv_end_sit();
}
template<class KeyType, class KeyEqual>
siterator priv_find_in_bucket //In case it is not found previt is priv_end_sit()
(bucket_type &b, const KeyType& key, KeyEqual equal_func, const std::size_t h) const
{
siterator it(this->sit_begin(b));
siterator const endit(this->sit_end(b));
for (; it != endit; (priv_go_to_last_in_group)(it, optimize_multikey_t()), ++it) {
if (BOOST_LIKELY(this->priv_is_value_equal_to_key
(this->priv_value_from_siterator(it), h, key, equal_func, compare_hash_t()))) {
return it;
}
}
return this->priv_end_sit();
}
template<class KeyType, class KeyEqual>
inline bool priv_is_value_equal_to_key
(const value_type &v, const std::size_t h, const KeyType &key, KeyEqual equal_func, detail::true_) const //compare_hash
{ return this->priv_stored_or_compute_hash(v, store_hash_t()) == h && equal_func(key, key_of_value()(v)); }
template<class KeyType, class KeyEqual>
inline bool priv_is_value_equal_to_key
(const value_type& v, const std::size_t , const KeyType& key, KeyEqual equal_func, detail::false_) const //compare_hash
{ return equal_func(key, key_of_value()(v)); }
//return previous iterator to the next equal range group in case
inline static void priv_go_to_last_in_group
(siterator &it_first_in_group, detail::true_) BOOST_NOEXCEPT //optimize_multikey
{
it_first_in_group =
(group_functions_t::get_last_in_group
(dcast_bucket_ptr<node>(it_first_in_group.pointed_node()), optimize_multikey_t()));
}
//return previous iterator to the next equal range group in case
inline static void priv_go_to_last_in_group //!optimize_multikey
(siterator /*&it_first_in_group*/, detail::false_) BOOST_NOEXCEPT
{ }
template<class KeyType, class KeyHasher, class KeyEqual>
std::pair<siterator, siterator> priv_local_equal_range
( const KeyType &key
, KeyHasher hash_func
, KeyEqual equal_func
, size_type &found_bucket
, size_type &cnt) const
{
std::size_t internal_cnt = 0;
//Let's see if the element is present
siterator prev;
size_type n_bucket;
std::size_t h;
std::pair<siterator, siterator> to_return
( this->priv_find(key, hash_func, equal_func, n_bucket, h, prev)
, this->priv_end_sit());
if(to_return.first != to_return.second){
found_bucket = n_bucket;
//If it's present, find the first that it's not equal in
//the same bucket
siterator it = to_return.first;
siterator const bend = this->priv_bucket_lend(n_bucket);
BOOST_IF_CONSTEXPR(optimize_multikey){
siterator past_last_in_group_it = it;
(priv_go_to_last_in_group)(past_last_in_group_it, optimize_multikey_t());
++past_last_in_group_it;
internal_cnt += boost::intrusive::iterator_udistance(++it, past_last_in_group_it) + 1u;
if (past_last_in_group_it != bend)
to_return.second = past_last_in_group_it;
}
else{
do {
++internal_cnt; //At least one is found
++it;
} while(it != bend &&
this->priv_is_value_equal_to_key
(this->priv_value_from_siterator(it), h, key, equal_func, compare_hash_t()));
if (it != bend)
to_return.second = it;
}
}
cnt = size_type(internal_cnt);
return to_return;
}
struct priv_equal_range_result
{
siterator first;
siterator second;
bucket_ptr bucket_first;
bucket_ptr bucket_second;
};
template<class KeyType, class KeyHasher, class KeyEqual>
priv_equal_range_result priv_equal_range
( const KeyType &key
, KeyHasher hash_func
, KeyEqual equal_func) const
{
size_type n_bucket;
size_type cnt;
//Let's see if the element is present
const std::pair<siterator, siterator> to_return
(this->priv_local_equal_range(key, hash_func, equal_func, n_bucket, cnt));
priv_equal_range_result r;
r.first = to_return.first;
r.second = to_return.second;
//If not, find the next element as ".second" if ".second" local iterator
//is not pointing to an element.
if(to_return.first == to_return.second) {
r.bucket_first = r.bucket_second = this->priv_invalid_bucket_ptr();
}
else if (to_return.second != this->priv_end_sit()) {
r.bucket_first = this->priv_bucket_ptr(n_bucket);
}
else{
r.bucket_first = this->priv_bucket_ptr(n_bucket);
const size_type max_bucket = this->bucket_count();
do{
++n_bucket;
} while (n_bucket != max_bucket && this->priv_bucket_empty(n_bucket));
if (n_bucket == max_bucket){
r.bucket_second = this->priv_invalid_bucket_ptr();
}
else{
r.bucket_second = this->priv_bucket_ptr(n_bucket);
r.second = siterator(r.bucket_second->begin_ptr());
}
}
return r;
}
inline size_type priv_get_bucket_num(const_iterator it) BOOST_NOEXCEPT
{ return this->priv_get_bucket_num(it, linear_buckets_t()); }
inline size_type priv_get_bucket_num(const_iterator it, detail::true_) BOOST_NOEXCEPT //linear
{ return size_type(it.get_bucket_ptr() - this->priv_bucket_pointer()); }
inline size_type priv_get_bucket_num(const_iterator it, detail::false_) BOOST_NOEXCEPT //!linear
{ return this->priv_get_bucket_num_hash_dispatch(it.slist_it(), store_hash_t()); }
inline size_type priv_get_bucket_num_hash_dispatch(siterator it, detail::true_) BOOST_NOEXCEPT //store_hash
{ return (size_type)this->priv_hash_to_nbucket(this->priv_stored_hash(it, store_hash_t())); }
size_type priv_get_bucket_num_hash_dispatch(siterator it, detail::false_) BOOST_NOEXCEPT //NO store_hash
{
const bucket_type &f = this->priv_bucket(0u);
slist_node_ptr bb = group_functions_t::get_bucket_before_begin
( this->priv_bucket_lbbegin(0u).pointed_node()
, this->priv_bucket_lbbegin(this->priv_usable_bucket_count() - 1u).pointed_node()
, it.pointed_node()
, optimize_multikey_t());
//Now get the bucket_impl from the iterator
const bucket_type &b = static_cast<const bucket_type&>(*bb);
//Now just calculate the index b has in the bucket array
return static_cast<size_type>(&b - &f);
}
inline bucket_ptr priv_get_bucket_ptr(const_iterator it) BOOST_NOEXCEPT
{ return this->priv_get_bucket_ptr(it, linear_buckets_t()); }
inline bucket_ptr priv_get_bucket_ptr(const_iterator it, detail::true_) BOOST_NOEXCEPT //linear
{ return it.get_bucket_ptr(); }
inline bucket_ptr priv_get_bucket_ptr(const_iterator it, detail::false_) BOOST_NOEXCEPT //!linear
{ return this->priv_bucket_ptr(this->priv_get_bucket_num_hash_dispatch(it.slist_it(), store_hash_t())); }
/// @endcond
};
/// @cond
template < class T
, class PackedOptions
>
struct make_bucket_traits
{
//Real value traits must be calculated from options
typedef typename detail::get_value_traits
<T, typename PackedOptions::proto_value_traits>::type value_traits;
typedef typename PackedOptions::bucket_traits specified_bucket_traits;
//Real bucket traits must be calculated from options and calculated value_traits
typedef bucket_traits_impl
< typename unordered_bucket_ptr_impl
<value_traits>::type
, std::size_t> bucket_traits_t;
typedef typename
detail::if_c< detail::is_same
< specified_bucket_traits
, default_bucket_traits
>::value
, bucket_traits_t
, specified_bucket_traits
>::type type;
};
/// @endcond
//! Helper metafunction to define a \c hashtable that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1 = void, class O2 = void
, class O3 = void, class O4 = void
, class O5 = void, class O6 = void
, class O7 = void, class O8 = void
, class O9 = void, class O10= void
, class O11= void
>
#endif
struct make_hashtable
{
/// @cond
typedef typename pack_options
< hashtable_defaults,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6, O7, O8, O9, O10, O11
#else
Options...
#endif
>::type packed_options;
typedef typename detail::get_value_traits
<T, typename packed_options::proto_value_traits>::type value_traits;
typedef typename make_bucket_traits
<T, packed_options>::type bucket_traits;
typedef hashtable_impl
< value_traits
, typename packed_options::key_of_value
, typename packed_options::hash
, typename packed_options::equal
, bucket_traits
, typename packed_options::size_type
, (std::size_t(false)*hash_bool_flags::unique_keys_pos)
|(std::size_t(packed_options::constant_time_size)*hash_bool_flags::constant_time_size_pos)
|(std::size_t(packed_options::power_2_buckets)*hash_bool_flags::power_2_buckets_pos)
|(std::size_t(packed_options::cache_begin)*hash_bool_flags::cache_begin_pos)
|(std::size_t(packed_options::compare_hash)*hash_bool_flags::compare_hash_pos)
|(std::size_t(packed_options::incremental)*hash_bool_flags::incremental_pos)
|(std::size_t(packed_options::linear_buckets)*hash_bool_flags::linear_buckets_pos)
|(std::size_t(packed_options::fastmod_buckets)*hash_bool_flags::fastmod_buckets_pos)
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
#if defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
template<class T, class ...Options>
#else
template<class T, class O1, class O2, class O3, class O4, class O5, class O6, class O7, class O8, class O9, class O10>
#endif
class hashtable
: public make_hashtable<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6, O7, O8, O9, O10
#else
Options...
#endif
>::type
{
typedef typename make_hashtable<T,
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES)
O1, O2, O3, O4, O5, O6, O7, O8, O9, O10
#else
Options...
#endif
>::type Base;
BOOST_MOVABLE_BUT_NOT_COPYABLE(hashtable)
public:
typedef typename Base::value_traits value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
typedef typename Base::bucket_ptr bucket_ptr;
typedef typename Base::size_type size_type;
typedef typename Base::hasher hasher;
typedef typename Base::bucket_traits bucket_traits;
typedef typename Base::key_equal key_equal;
//Assert if passed value traits are compatible with the type
BOOST_INTRUSIVE_STATIC_ASSERT((detail::is_same<typename value_traits::value_type, T>::value));
inline explicit hashtable ( const bucket_traits &b_traits
, const hasher & hash_func = hasher()
, const key_equal &equal_func = key_equal()
, const value_traits &v_traits = value_traits())
: Base(b_traits, hash_func, equal_func, v_traits)
{}
inline hashtable(BOOST_RV_REF(hashtable) x)
: Base(BOOST_MOVE_BASE(Base, x))
{}
inline hashtable& operator=(BOOST_RV_REF(hashtable) x)
{ return static_cast<hashtable&>(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); }
template <class Cloner, class Disposer>
inline void clone_from(const hashtable &src, Cloner cloner, Disposer disposer)
{ Base::clone_from(src, cloner, disposer); }
template <class Cloner, class Disposer>
inline void clone_from(BOOST_RV_REF(hashtable) src, Cloner cloner, Disposer disposer)
{ Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer); }
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_HASHTABLE_HPP