boost/iostreams/compose.hpp
// (C) Copyright 2008 CodeRage, LLC (turkanis at coderage dot com)
// (C) Copyright 2005-2007 Jonathan Turkanis
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt.)
// See http://www.boost.org/libs/iostreams for documentation.
// Note: bidirectional streams are not supported.
#ifndef BOOST_IOSTREAMS_COMPOSE_HPP_INCLUDED
#define BOOST_IOSTREAMS_COMPOSE_HPP_INCLUDED
#if defined(_MSC_VER)
# pragma once
#endif
#include <algorithm> // min.
#include <utility> // pair.
#include <boost/config.hpp> // DEDUCED_TYPENAME.
#include <boost/iostreams/categories.hpp>
#include <boost/iostreams/detail/adapter/direct_adapter.hpp>
#include <boost/iostreams/detail/call_traits.hpp>
#include <boost/iostreams/detail/enable_if_stream.hpp>
#include <boost/iostreams/detail/execute.hpp>
#include <boost/iostreams/detail/functional.hpp>
#include <boost/iostreams/operations.hpp>
#include <boost/iostreams/traits.hpp> // mode_of, is_direct.
#include <boost/mpl/if.hpp>
#include <boost/ref.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_convertible.hpp>
// Must come last.
#include <boost/iostreams/detail/config/disable_warnings.hpp> // MSVC.
namespace boost { namespace iostreams {
namespace detail {
template< typename First,
typename Second,
typename FirstMode =
BOOST_DEDUCED_TYPENAME mode_of<First>::type,
typename SecondMode =
BOOST_DEDUCED_TYPENAME mode_of<Second>::type >
struct composite_mode
: select<
is_convertible<SecondMode, FirstMode>, FirstMode,
is_convertible<FirstMode, SecondMode>, SecondMode,
is_convertible<SecondMode, input>, input,
else_, output
>
{ };
//
// Template name: composite_device.
// Description: Provides a Device view of a Filter, Device pair.
// Template parameters:
// Filter - A model of Filter.
// Device - An indirect model of Device.
//
template< typename Filter,
typename Device,
typename Mode =
BOOST_DEDUCED_TYPENAME composite_mode<Filter, Device>::type >
class composite_device {
private:
typedef typename detail::param_type<Device>::type param_type;
typedef typename mode_of<Filter>::type filter_mode;
typedef typename mode_of<Device>::type device_mode;
typedef typename
iostreams::select< // Disambiguation for Tru64.
is_direct<Device>, direct_adapter<Device>,
is_std_io<Device>, Device&,
else_, Device
>::type value_type;
BOOST_STATIC_ASSERT(is_filter<Filter>::value);
BOOST_STATIC_ASSERT(is_device<Device>::value);
public:
typedef typename char_type_of<Filter>::type char_type;
struct category
: Mode,
device_tag,
closable_tag,
flushable_tag,
localizable_tag,
optimally_buffered_tag
{ };
composite_device(const Filter& flt, param_type dev);
std::streamsize read(char_type* s, std::streamsize n);
std::streamsize write(const char_type* s, std::streamsize n);
std::streampos seek( stream_offset off, BOOST_IOS::seekdir way,
BOOST_IOS::openmode which =
BOOST_IOS::in | BOOST_IOS::out );
void close();
void close(BOOST_IOS::openmode which);
bool flush();
std::streamsize optimal_buffer_size() const;
template<typename Locale> // Avoid dependency on <locale>
void imbue(const Locale& loc)
{
iostreams::imbue(filter_, loc);
iostreams::imbue(device_, loc);
}
Filter& first() { return filter_; }
Device& second() { return device_; }
private:
Filter filter_;
value_type device_;
};
//
// Template name: composite_device.
// Description: Provides a Device view of a Filter, Device pair.
// Template parameters:
// Filter - A model of Filter.
// Device - An indirect model of Device.
//
template< typename Filter1,
typename Filter2,
typename Mode =
BOOST_DEDUCED_TYPENAME composite_mode<Filter1, Filter2>::type >
class composite_filter {
private:
typedef reference_wrapper<Filter2> filter_ref;
typedef typename mode_of<Filter1>::type first_mode;
typedef typename mode_of<Filter2>::type second_mode;
// A dual-use filter cannot be composed with a read-write filter
BOOST_STATIC_ASSERT(
!(is_convertible<first_mode, dual_use>::value) ||
!(is_convertible<second_mode, input>::value) ||
!(is_convertible<second_mode, output>::value) ||
(is_convertible<second_mode, dual_use>::value)
);
BOOST_STATIC_ASSERT(
!(is_convertible<second_mode, dual_use>::value) ||
!(is_convertible<first_mode, input>::value) ||
!(is_convertible<first_mode, output>::value) ||
(is_convertible<first_mode, dual_use>::value)
);
BOOST_STATIC_ASSERT(is_filter<Filter1>::value);
BOOST_STATIC_ASSERT(is_filter<Filter2>::value);
public:
typedef typename char_type_of<Filter1>::type char_type;
struct category
: Mode,
filter_tag,
multichar_tag,
closable_tag,
flushable_tag,
localizable_tag,
optimally_buffered_tag
{ };
composite_filter(const Filter1& filter1, const Filter2& filter2)
: filter1_(filter1), filter2_(filter2)
{ }
template<typename Source>
std::streamsize read(Source& src, char_type* s, std::streamsize n)
{
composite_device<filter_ref, Source> cmp(boost::ref(filter2_), src);
return iostreams::read(filter1_, cmp, s, n);
}
template<typename Sink>
std::streamsize write(Sink& snk, const char_type* s, std::streamsize n)
{
composite_device<filter_ref, Sink> cmp(boost::ref(filter2_), snk);
return iostreams::write(filter1_, cmp, s, n);
}
template<typename Device>
std::streampos seek( Device& dev, stream_offset off, BOOST_IOS::seekdir way,
BOOST_IOS::openmode which =
BOOST_IOS::in | BOOST_IOS::out )
{
composite_device<filter_ref, Device> cmp(boost::ref(filter2_), dev);
return iostreams::seek(filter1_, cmp, off, way, which);
}
template<typename Device>
void close(Device& dev)
{
BOOST_STATIC_ASSERT((!is_convertible<category, two_sequence>::value));
BOOST_STATIC_ASSERT((!is_convertible<category, dual_use>::value));
// Create a new device by composing the second filter2_ with dev.
composite_device<filter_ref, Device> cmp(boost::ref(filter2_), dev);
// Close input sequences in reverse order and output sequences in
// forward order
if (!is_convertible<first_mode, dual_use>::value) {
detail::execute_all(
detail::call_close(filter2_, dev, BOOST_IOS::in),
detail::call_close(filter1_, cmp, BOOST_IOS::in),
detail::call_close(filter1_, cmp, BOOST_IOS::out),
detail::call_close(filter2_, dev, BOOST_IOS::out)
);
} else if (is_convertible<second_mode, input>::value) {
detail::execute_all(
detail::call_close(filter2_, dev, BOOST_IOS::in),
detail::call_close(filter1_, cmp, BOOST_IOS::in)
);
} else {
detail::execute_all(
detail::call_close(filter1_, cmp, BOOST_IOS::out),
detail::call_close(filter2_, dev, BOOST_IOS::out)
);
}
}
template<typename Device>
void close(Device& dev, BOOST_IOS::openmode which)
{
BOOST_STATIC_ASSERT(
(is_convertible<category, two_sequence>::value) ||
(is_convertible<category, dual_use>::value)
);
// Create a new device by composing the second filter2_ with dev.
composite_device<filter_ref, Device> cmp(boost::ref(filter2_), dev);
// Close input sequences in reverse order
if ( which == BOOST_IOS::in &&
( !is_convertible<first_mode, dual_use>::value ||
is_convertible<second_mode, input>::value ) )
{
detail::execute_all(
detail::call_close(filter2_, dev, BOOST_IOS::in),
detail::call_close(filter1_, cmp, BOOST_IOS::in)
);
}
// Close output sequences in forward order
if ( which == BOOST_IOS::out &&
( !is_convertible<first_mode, dual_use>::value ||
is_convertible<second_mode, output>::value ) )
{
detail::execute_all(
detail::call_close(filter1_, cmp, BOOST_IOS::out),
detail::call_close(filter2_, dev, BOOST_IOS::out)
);
}
}
template<typename Device>
bool flush(Device& dev)
{
composite_device<Filter2, Device> cmp(filter2_, dev);
return iostreams::flush(filter1_, cmp);
}
std::streamsize optimal_buffer_size() const
{
std::streamsize first = iostreams::optimal_buffer_size(filter1_);
std::streamsize second = iostreams::optimal_buffer_size(filter2_);
return first < second ? second : first;
}
template<typename Locale> // Avoid dependency on <locale>
void imbue(const Locale& loc)
{ // To do: consider using RAII.
iostreams::imbue(filter1_, loc);
iostreams::imbue(filter2_, loc);
}
Filter1& first() { return filter1_; }
Filter2& second() { return filter2_; }
private:
Filter1 filter1_;
Filter2 filter2_;
};
template<typename Filter, typename FilterOrDevice>
struct composite_traits
: mpl::if_<
is_device<FilterOrDevice>,
composite_device<Filter, FilterOrDevice>,
composite_filter<Filter, FilterOrDevice>
>
{ };
} // End namespace detail.
template<typename Filter, typename FilterOrDevice>
struct composite : detail::composite_traits<Filter, FilterOrDevice>::type {
typedef typename detail::param_type<FilterOrDevice>::type param_type;
typedef typename detail::composite_traits<Filter, FilterOrDevice>::type base;
composite(const Filter& flt, param_type dev)
: base(flt, dev)
{ }
};
//--------------Implementation of compose-------------------------------------//
// Note: The following workarounds are patterned after resolve.hpp. It has not
// yet been confirmed that they are necessary.
#ifndef BOOST_IOSTREAMS_BROKEN_OVERLOAD_RESOLUTION //-------------------------//
# ifndef BOOST_IOSTREAMS_NO_STREAM_TEMPLATES //-------------------------------//
template<typename Filter, typename FilterOrDevice>
composite<Filter, FilterOrDevice>
compose( const Filter& filter, const FilterOrDevice& fod
BOOST_IOSTREAMS_DISABLE_IF_STREAM(FilterOrDevice) )
{ return composite<Filter, FilterOrDevice>(filter, fod); }
template<typename Filter, typename Ch, typename Tr>
composite< Filter, std::basic_streambuf<Ch, Tr> >
compose(const Filter& filter, std::basic_streambuf<Ch, Tr>& sb)
{ return composite< Filter, std::basic_streambuf<Ch, Tr> >(filter, sb); }
template<typename Filter, typename Ch, typename Tr>
composite< Filter, std::basic_istream<Ch, Tr> >
compose(const Filter& filter, std::basic_istream<Ch, Tr>& is)
{ return composite< Filter, std::basic_istream<Ch, Tr> >(filter, is); }
template<typename Filter, typename Ch, typename Tr>
composite< Filter, std::basic_ostream<Ch, Tr> >
compose(const Filter& filter, std::basic_ostream<Ch, Tr>& os)
{ return composite< Filter, std::basic_ostream<Ch, Tr> >(filter, os); }
template<typename Filter, typename Ch, typename Tr>
composite< Filter, std::basic_iostream<Ch, Tr> >
compose(const Filter& filter, std::basic_iostream<Ch, Tr>& io)
{ return composite< Filter, std::basic_iostream<Ch, Tr> >(filter, io); }
# else // # ifndef BOOST_IOSTREAMS_NO_STREAM_TEMPLATES //---------------------//
template<typename Filter, typename FilterOrDevice>
composite<Filter, FilterOrDevice>
compose( const Filter& filter, const FilterOrDevice& fod
BOOST_IOSTREAMS_DISABLE_IF_STREAM(FilterOrDevice) )
{ return composite<Filter, FilterOrDevice>(filter, fod); }
template<typename Filter>
composite<Filter, std::streambuf>
compose(const Filter& filter, std::streambuf& sb)
{ return composite<Filter, std::streambuf>(filter, sb); }
template<typename Filter>
composite<Filter, std::istream>
compose(const Filter& filter, std::istream& is)
{ return composite<Filter, std::istream>(filter, is); }
template<typename Filter>
composite<Filter, std::ostream>
compose(const Filter& filter, std::ostream& os)
{ return composite<Filter, std::ostream>(filter, os); }
template<typename Filter>
composite<Filter, std::iostream>
compose(const Filter& filter, std::iostream& io)
{ return composite<Filter, std::iostream>(filter, io); }
# endif // # ifndef BOOST_IOSTREAMS_NO_STREAM_TEMPLATES //--------------------//
#else // #ifndef BOOST_IOSTREAMS_BROKEN_OVERLOAD_RESOLUTION //----------------//
template<typename Filter, typename Stream>
composite<Filter, Stream>
compose(const Filter& flt, const Stream& strm, mpl::true_)
{ // Bad overload resolution.
return composite<Filter, Stream>(flt, const_cast<Stream&>(strm));
}
template<typename Filter, typename FilterOrDevice>
composite<Filter, FilterOrDevice>
compose(const Filter& flt, const FilterOrDevice& fod, mpl::false_)
{ return composite<Filter, FilterOrDevice>(flt, fod); }
template<typename Filter, typename FilterOrDevice>
composite<Filter, FilterOrDevice>
compose( const Filter& flt, const FilterOrDevice& fod
BOOST_IOSTREAMS_DISABLE_IF_STREAM(T) )
{ return compose(flt, fod, is_std_io<FilterOrDevice>()); }
# if !BOOST_WORKAROUND(BOOST_BORLANDC, < 0x600) && \
!defined(__GNUC__) // ---------------------------------------------------//
template<typename Filter, typename FilterOrDevice>
composite<Filter, FilterOrDevice>
compose (const Filter& filter, FilterOrDevice& fod)
{ return composite<Filter, FilterOrDevice>(filter, fod); }
# endif // Borland 5.x or GCC //--------------------------------//
#endif // #ifndef BOOST_IOSTREAMS_BROKEN_OVERLOAD_RESOLUTION //---------------//
//----------------------------------------------------------------------------//
namespace detail {
//--------------Implementation of composite_device---------------------------//
template<typename Filter, typename Device, typename Mode>
composite_device<Filter, Device, Mode>::composite_device
(const Filter& flt, param_type dev)
: filter_(flt), device_(dev)
{ }
template<typename Filter, typename Device, typename Mode>
inline std::streamsize composite_device<Filter, Device, Mode>::read
(char_type* s, std::streamsize n)
{ return iostreams::read(filter_, device_, s, n); }
template<typename Filter, typename Device, typename Mode>
inline std::streamsize composite_device<Filter, Device, Mode>::write
(const char_type* s, std::streamsize n)
{ return iostreams::write(filter_, device_, s, n); }
template<typename Filter, typename Device, typename Mode>
std::streampos composite_device<Filter, Device, Mode>::seek
(stream_offset off, BOOST_IOS::seekdir way, BOOST_IOS::openmode which)
{ return iostreams::seek(filter_, device_, off, way, which); }
template<typename Filter, typename Device, typename Mode>
void composite_device<Filter, Device, Mode>::close()
{
BOOST_STATIC_ASSERT((!is_convertible<Mode, two_sequence>::value));
BOOST_STATIC_ASSERT(
!(is_convertible<filter_mode, dual_use>::value) ||
!(is_convertible<device_mode, input>::value) ||
!(is_convertible<device_mode, output>::value)
);
// Close input sequences in reverse order and output sequences
// in forward order
if (!is_convertible<filter_mode, dual_use>::value) {
detail::execute_all(
detail::call_close(device_, BOOST_IOS::in),
detail::call_close(filter_, device_, BOOST_IOS::in),
detail::call_close(filter_, device_, BOOST_IOS::out),
detail::call_close(device_, BOOST_IOS::out)
);
} else if (is_convertible<device_mode, input>::value) {
detail::execute_all(
detail::call_close(device_, BOOST_IOS::in),
detail::call_close(filter_, device_, BOOST_IOS::in)
);
} else {
detail::execute_all(
detail::call_close(filter_, device_, BOOST_IOS::out),
detail::call_close(device_, BOOST_IOS::out)
);
}
}
template<typename Filter, typename Device, typename Mode>
void composite_device<Filter, Device, Mode>::close(BOOST_IOS::openmode which)
{
BOOST_STATIC_ASSERT((is_convertible<Mode, two_sequence>::value));
BOOST_STATIC_ASSERT(!(is_convertible<filter_mode, dual_use>::value));
// Close input sequences in reverse order
if (which == BOOST_IOS::in) {
detail::execute_all(
detail::call_close(device_, BOOST_IOS::in),
detail::call_close(filter_, device_, BOOST_IOS::in)
);
}
// Close output sequences in forward order
if (which == BOOST_IOS::out) {
detail::execute_all(
detail::call_close(filter_, device_, BOOST_IOS::out),
detail::call_close(device_, BOOST_IOS::out)
);
}
}
template<typename Filter, typename Device, typename Mode>
bool composite_device<Filter, Device, Mode>::flush()
{
bool r1 = iostreams::flush(filter_, device_);
bool r2 = iostreams::flush(device_);
return r1 && r2;
}
template<typename Filter, typename Device, typename Mode>
std::streamsize
composite_device<Filter, Device, Mode>::optimal_buffer_size() const
{ return iostreams::optimal_buffer_size(device_); }
} // End namespace detail.
} } // End namespaces iostreams, boost.
#include <boost/iostreams/detail/config/enable_warnings.hpp>
#endif // #ifndef BOOST_IOSTREAMS_COMPOSE_HPP_INCLUDED