boost/math/special_functions/detail/bessel_ik.hpp
// Copyright (c) 2006 Xiaogang Zhang
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_BESSEL_IK_HPP
#define BOOST_MATH_BESSEL_IK_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <cmath>
#include <cstdint>
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/config.hpp>
// Modified Bessel functions of the first and second kind of fractional order
namespace boost { namespace math {
namespace detail {
template <class T, class Policy>
struct cyl_bessel_i_small_z
{
typedef T result_type;
cyl_bessel_i_small_z(T v_, T z_) : k(0), v(v_), mult(z_*z_/4)
{
BOOST_MATH_STD_USING
term = 1;
}
T operator()()
{
T result = term;
++k;
term *= mult / k;
term /= k + v;
return result;
}
private:
unsigned k;
T v;
T term;
T mult;
};
template <class T, class Policy>
inline T bessel_i_small_z_series(T v, T x, const Policy& pol)
{
BOOST_MATH_STD_USING
T prefix;
if(v < max_factorial<T>::value)
{
prefix = pow(x / 2, v) / boost::math::tgamma(v + 1, pol);
}
else
{
prefix = v * log(x / 2) - boost::math::lgamma(v + 1, pol);
prefix = exp(prefix);
}
if(prefix == 0)
return prefix;
cyl_bessel_i_small_z<T, Policy> s(v, x);
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
policies::check_series_iterations<T>("boost::math::bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
return prefix * result;
}
// Calculate K(v, x) and K(v+1, x) by method analogous to
// Temme, Journal of Computational Physics, vol 21, 343 (1976)
template <typename T, typename Policy>
int temme_ik(T v, T x, T* result_K, T* K1, const Policy& pol)
{
T f, h, p, q, coef, sum, sum1, tolerance;
T a, b, c, d, sigma, gamma1, gamma2;
unsigned long k;
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
// |x| <= 2, Temme series converge rapidly
// |x| > 2, the larger the |x|, the slower the convergence
BOOST_MATH_ASSERT(abs(x) <= 2);
BOOST_MATH_ASSERT(abs(v) <= 0.5f);
T gp = boost::math::tgamma1pm1(v, pol);
T gm = boost::math::tgamma1pm1(-v, pol);
a = log(x / 2);
b = exp(v * a);
sigma = -a * v;
c = abs(v) < tools::epsilon<T>() ?
T(1) : T(boost::math::sin_pi(v, pol) / (v * pi<T>()));
d = abs(sigma) < tools::epsilon<T>() ?
T(1) : T(sinh(sigma) / sigma);
gamma1 = abs(v) < tools::epsilon<T>() ?
T(-euler<T>()) : T((0.5f / v) * (gp - gm) * c);
gamma2 = (2 + gp + gm) * c / 2;
// initial values
p = (gp + 1) / (2 * b);
q = (1 + gm) * b / 2;
f = (cosh(sigma) * gamma1 + d * (-a) * gamma2) / c;
h = p;
coef = 1;
sum = coef * f;
sum1 = coef * h;
BOOST_MATH_INSTRUMENT_VARIABLE(p);
BOOST_MATH_INSTRUMENT_VARIABLE(q);
BOOST_MATH_INSTRUMENT_VARIABLE(f);
BOOST_MATH_INSTRUMENT_VARIABLE(sigma);
BOOST_MATH_INSTRUMENT_CODE(sinh(sigma));
BOOST_MATH_INSTRUMENT_VARIABLE(gamma1);
BOOST_MATH_INSTRUMENT_VARIABLE(gamma2);
BOOST_MATH_INSTRUMENT_VARIABLE(c);
BOOST_MATH_INSTRUMENT_VARIABLE(d);
BOOST_MATH_INSTRUMENT_VARIABLE(a);
// series summation
tolerance = tools::epsilon<T>();
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
{
f = (k * f + p + q) / (k*k - v*v);
p /= k - v;
q /= k + v;
h = p - k * f;
coef *= x * x / (4 * k);
sum += coef * f;
sum1 += coef * h;
if (abs(coef * f) < abs(sum) * tolerance)
{
break;
}
}
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in temme_ik", k, pol);
*result_K = sum;
*K1 = 2 * sum1 / x;
return 0;
}
// Evaluate continued fraction fv = I_(v+1) / I_v, derived from
// Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
template <typename T, typename Policy>
int CF1_ik(T v, T x, T* fv, const Policy& pol)
{
T C, D, f, a, b, delta, tiny, tolerance;
unsigned long k;
BOOST_MATH_STD_USING
// |x| <= |v|, CF1_ik converges rapidly
// |x| > |v|, CF1_ik needs O(|x|) iterations to converge
// modified Lentz's method, see
// Lentz, Applied Optics, vol 15, 668 (1976)
tolerance = 2 * tools::epsilon<T>();
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
tiny = sqrt(tools::min_value<T>());
BOOST_MATH_INSTRUMENT_VARIABLE(tiny);
C = f = tiny; // b0 = 0, replace with tiny
D = 0;
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
{
a = 1;
b = 2 * (v + k) / x;
C = b + a / C;
D = b + a * D;
if (C == 0) { C = tiny; }
if (D == 0) { D = tiny; }
D = 1 / D;
delta = C * D;
f *= delta;
BOOST_MATH_INSTRUMENT_VARIABLE(delta-1);
if (abs(delta - 1) <= tolerance)
{
break;
}
}
BOOST_MATH_INSTRUMENT_VARIABLE(k);
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in CF1_ik", k, pol);
*fv = f;
return 0;
}
// Calculate K(v, x) and K(v+1, x) by evaluating continued fraction
// z1 / z0 = U(v+1.5, 2v+1, 2x) / U(v+0.5, 2v+1, 2x), see
// Thompson and Barnett, Computer Physics Communications, vol 47, 245 (1987)
template <typename T, typename Policy>
int CF2_ik(T v, T x, T* Kv, T* Kv1, const Policy& pol)
{
BOOST_MATH_STD_USING
using namespace boost::math::constants;
T S, C, Q, D, f, a, b, q, delta, tolerance, current, prev;
unsigned long k;
// |x| >= |v|, CF2_ik converges rapidly
// |x| -> 0, CF2_ik fails to converge
BOOST_MATH_ASSERT(abs(x) > 1);
// Steed's algorithm, see Thompson and Barnett,
// Journal of Computational Physics, vol 64, 490 (1986)
tolerance = tools::epsilon<T>();
a = v * v - 0.25f;
b = 2 * (x + 1); // b1
D = 1 / b; // D1 = 1 / b1
f = delta = D; // f1 = delta1 = D1, coincidence
prev = 0; // q0
current = 1; // q1
Q = C = -a; // Q1 = C1 because q1 = 1
S = 1 + Q * delta; // S1
BOOST_MATH_INSTRUMENT_VARIABLE(tolerance);
BOOST_MATH_INSTRUMENT_VARIABLE(a);
BOOST_MATH_INSTRUMENT_VARIABLE(b);
BOOST_MATH_INSTRUMENT_VARIABLE(D);
BOOST_MATH_INSTRUMENT_VARIABLE(f);
for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++) // starting from 2
{
// continued fraction f = z1 / z0
a -= 2 * (k - 1);
b += 2;
D = 1 / (b + a * D);
delta *= b * D - 1;
f += delta;
// series summation S = 1 + \sum_{n=1}^{\infty} C_n * z_n / z_0
q = (prev - (b - 2) * current) / a;
prev = current;
current = q; // forward recurrence for q
C *= -a / k;
Q += C * q;
S += Q * delta;
//
// Under some circumstances q can grow very small and C very
// large, leading to under/overflow. This is particularly an
// issue for types which have many digits precision but a narrow
// exponent range. A typical example being a "double double" type.
// To avoid this situation we can normalise q (and related prev/current)
// and C. All other variables remain unchanged in value. A typical
// test case occurs when x is close to 2, for example cyl_bessel_k(9.125, 2.125).
//
if(q < tools::epsilon<T>())
{
C *= q;
prev /= q;
current /= q;
q = 1;
}
// S converges slower than f
BOOST_MATH_INSTRUMENT_VARIABLE(Q * delta);
BOOST_MATH_INSTRUMENT_VARIABLE(abs(S) * tolerance);
BOOST_MATH_INSTRUMENT_VARIABLE(S);
if (abs(Q * delta) < abs(S) * tolerance)
{
break;
}
}
policies::check_series_iterations<T>("boost::math::bessel_ik<%1%>(%1%,%1%) in CF2_ik", k, pol);
if(x >= tools::log_max_value<T>())
*Kv = exp(0.5f * log(pi<T>() / (2 * x)) - x - log(S));
else
*Kv = sqrt(pi<T>() / (2 * x)) * exp(-x) / S;
*Kv1 = *Kv * (0.5f + v + x + (v * v - 0.25f) * f) / x;
BOOST_MATH_INSTRUMENT_VARIABLE(*Kv);
BOOST_MATH_INSTRUMENT_VARIABLE(*Kv1);
return 0;
}
enum{
need_i = 1,
need_k = 2
};
// Compute I(v, x) and K(v, x) simultaneously by Temme's method, see
// Temme, Journal of Computational Physics, vol 19, 324 (1975)
template <typename T, typename Policy>
int bessel_ik(T v, T x, T* result_I, T* result_K, int kind, const Policy& pol)
{
// Kv1 = K_(v+1), fv = I_(v+1) / I_v
// Ku1 = K_(u+1), fu = I_(u+1) / I_u
T u, Iv, Kv, Kv1, Ku, Ku1, fv;
T W, current, prev, next;
bool reflect = false;
unsigned n, k;
int org_kind = kind;
BOOST_MATH_INSTRUMENT_VARIABLE(v);
BOOST_MATH_INSTRUMENT_VARIABLE(x);
BOOST_MATH_INSTRUMENT_VARIABLE(kind);
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
static const char* function = "boost::math::bessel_ik<%1%>(%1%,%1%)";
if (v < 0)
{
reflect = true;
v = -v; // v is non-negative from here
kind |= need_k;
}
T scale = 1;
T scale_sign = 1;
if (((kind & need_i) == 0) && (fabs(4 * v * v - 25) / (8 * x) < tools::forth_root_epsilon<T>()))
{
// A&S 9.7.2
Iv = std::numeric_limits<T>::quiet_NaN(); // any value will do
T mu = 4 * v * v;
T eight_z = 8 * x;
Kv = 1 + (mu - 1) / eight_z + (mu - 1) * (mu - 9) / (2 * eight_z * eight_z) + (mu - 1) * (mu - 9) * (mu - 25) / (6 * eight_z * eight_z * eight_z);
Kv *= exp(-x) * constants::root_pi<T>() / sqrt(2 * x);
}
else
{
n = iround(v, pol);
u = v - n; // -1/2 <= u < 1/2
BOOST_MATH_INSTRUMENT_VARIABLE(n);
BOOST_MATH_INSTRUMENT_VARIABLE(u);
BOOST_MATH_ASSERT(x > 0); // Error handling for x <= 0 handled in cyl_bessel_i and cyl_bessel_k
// x is positive until reflection
W = 1 / x; // Wronskian
if (x <= 2) // x in (0, 2]
{
temme_ik(u, x, &Ku, &Ku1, pol); // Temme series
}
else // x in (2, \infty)
{
CF2_ik(u, x, &Ku, &Ku1, pol); // continued fraction CF2_ik
}
BOOST_MATH_INSTRUMENT_VARIABLE(Ku);
BOOST_MATH_INSTRUMENT_VARIABLE(Ku1);
prev = Ku;
current = Ku1;
for (k = 1; k <= n; k++) // forward recurrence for K
{
T fact = 2 * (u + k) / x;
// Check for overflow: if (max - |prev|) / fact > max, then overflow
// (max - |prev|) / fact > max
// max * (1 - fact) > |prev|
// if fact < 1: safe to compute overflow check
// if fact >= 1: won't overflow
const bool will_overflow = (fact < 1)
? tools::max_value<T>() * (1 - fact) > fabs(prev)
: false;
if (!will_overflow && ((tools::max_value<T>() - fabs(prev)) / fact < fabs(current)))
{
prev /= current;
scale /= current;
scale_sign *= ((boost::math::signbit)(current) ? -1 : 1);
current = 1;
}
next = fact * current + prev;
prev = current;
current = next;
}
Kv = prev;
Kv1 = current;
BOOST_MATH_INSTRUMENT_VARIABLE(Kv);
BOOST_MATH_INSTRUMENT_VARIABLE(Kv1);
if (kind & need_i)
{
T lim = (4 * v * v + 10) / (8 * x);
lim *= lim;
lim *= lim;
lim /= 24;
if ((lim < tools::epsilon<T>() * 10) && (x > 100))
{
// x is huge compared to v, CF1 may be very slow
// to converge so use asymptotic expansion for large
// x case instead. Note that the asymptotic expansion
// isn't very accurate - so it's deliberately very hard
// to get here - probably we're going to overflow:
Iv = asymptotic_bessel_i_large_x(v, x, pol);
}
else if ((v > 0) && (x / v < 0.25))
{
Iv = bessel_i_small_z_series(v, x, pol);
}
else
{
CF1_ik(v, x, &fv, pol); // continued fraction CF1_ik
Iv = scale * W / (Kv * fv + Kv1); // Wronskian relation
}
}
else
Iv = std::numeric_limits<T>::quiet_NaN(); // any value will do
}
if (reflect)
{
T z = (u + n % 2);
T fact = (2 / pi<T>()) * (boost::math::sin_pi(z, pol) * Kv);
if(fact == 0)
*result_I = Iv;
else if(tools::max_value<T>() * scale < fact)
*result_I = (org_kind & need_i) ? T(sign(fact) * scale_sign * policies::raise_overflow_error<T>(function, nullptr, pol)) : T(0);
else
*result_I = Iv + fact / scale; // reflection formula
}
else
{
*result_I = Iv;
}
if(tools::max_value<T>() * scale < Kv)
*result_K = (org_kind & need_k) ? T(sign(Kv) * scale_sign * policies::raise_overflow_error<T>(function, nullptr, pol)) : T(0);
else
*result_K = Kv / scale;
BOOST_MATH_INSTRUMENT_VARIABLE(*result_I);
BOOST_MATH_INSTRUMENT_VARIABLE(*result_K);
return 0;
}
}}} // namespaces
#endif // BOOST_MATH_BESSEL_IK_HPP