boost/math/tools/condition_numbers.hpp
// (C) Copyright Nick Thompson 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_CONDITION_NUMBERS_HPP
#define BOOST_MATH_TOOLS_CONDITION_NUMBERS_HPP
#include <cmath>
#include <limits>
#include <boost/math/differentiation/finite_difference.hpp>
#include <boost/math/tools/config.hpp>
namespace boost { namespace math { namespace tools {
template<class Real, bool kahan=true>
class summation_condition_number {
public:
summation_condition_number(Real const x = 0)
{
using std::abs;
m_l1 = abs(x);
m_sum = x;
m_c = 0;
}
void operator+=(Real const & x)
{
using std::abs;
// No need to Kahan the l1 calc; it's well conditioned:
m_l1 += abs(x);
BOOST_MATH_IF_CONSTEXPR (kahan)
{
Real y = x - m_c;
Real t = m_sum + y;
m_c = (t-m_sum) -y;
m_sum = t;
}
else
{
m_sum += x;
}
}
inline void operator-=(Real const & x)
{
this->operator+=(-x);
}
// Is operator*= relevant? Presumably everything gets rescaled,
// (m_sum -> k*m_sum, m_l1->k*m_l1, m_c->k*m_c),
// but is this sensible? More important is it useful?
// In addition, it might change the condition number.
Real operator()() const
{
using std::abs;
if (m_sum == Real(0) && m_l1 != Real(0))
{
return std::numeric_limits<Real>::infinity();
}
return m_l1/abs(m_sum);
}
Real sum() const
{
// Higham, 1993, "The Accuracy of Floating Point Summation":
// "In [17] and [18], Kahan describes a variation of compensated summation in which the final sum is also corrected
// thus s=s+e is appended to the algorithm above)."
return m_sum + m_c;
}
Real l1_norm() const
{
return m_l1;
}
private:
Real m_l1;
Real m_sum;
Real m_c;
};
template<class F, class Real>
Real evaluation_condition_number(F const & f, Real const & x)
{
using std::abs;
using std::isnan;
using std::sqrt;
using boost::math::differentiation::finite_difference_derivative;
Real fx = f(x);
if (isnan(fx))
{
return std::numeric_limits<Real>::quiet_NaN();
}
bool caught_exception = false;
Real fp;
#ifndef BOOST_MATH_NO_EXCEPTIONS
try
{
#endif
fp = finite_difference_derivative(f, x);
#ifndef BOOST_MATH_NO_EXCEPTIONS
}
catch(...)
{
caught_exception = true;
}
#endif
if (isnan(fp) || caught_exception)
{
// Check if the right derivative exists:
fp = finite_difference_derivative<decltype(f), Real, 1>(f, x);
if (isnan(fp))
{
// Check if a left derivative exists:
const Real eps = (std::numeric_limits<Real>::epsilon)();
Real h = - 2 * sqrt(eps);
h = boost::math::differentiation::detail::make_xph_representable(x, h);
Real yh = f(x + h);
Real y0 = f(x);
Real diff = yh - y0;
fp = diff / h;
if (isnan(fp))
{
return std::numeric_limits<Real>::quiet_NaN();
}
}
}
if (fx == 0)
{
if (x==0 || fp==0)
{
return std::numeric_limits<Real>::quiet_NaN();
}
return std::numeric_limits<Real>::infinity();
}
return abs(x*fp/fx);
}
}}} // Namespaces
#endif