boost/regex/v5/cpp_regex_traits.hpp
/*
*
* Copyright (c) 2004 John Maddock
* Copyright 2011 Garmin Ltd. or its subsidiaries
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE cpp_regex_traits.hpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Declares regular expression traits class cpp_regex_traits.
*/
#ifndef BOOST_CPP_REGEX_TRAITS_HPP_INCLUDED
#define BOOST_CPP_REGEX_TRAITS_HPP_INCLUDED
#include <boost/regex/config.hpp>
#include <cstdint>
#include <locale>
#include <type_traits>
#include <boost/regex/pattern_except.hpp>
#include <boost/regex/v5/regex_traits_defaults.hpp>
#ifdef BOOST_HAS_THREADS
#include <mutex>
#endif
#include <boost/regex/v5/primary_transform.hpp>
#include <boost/regex/v5/object_cache.hpp>
#include <climits>
#include <ios>
#include <istream>
#ifdef BOOST_REGEX_MSVC
#pragma warning(push)
#pragma warning(disable:4786 4251)
#endif
namespace boost{
//
// forward declaration is needed by some compilers:
//
template <class charT>
class cpp_regex_traits;
namespace BOOST_REGEX_DETAIL_NS{
//
// class parser_buf:
// acts as a stream buffer which wraps around a pair of pointers:
//
template <class charT,
class traits = ::std::char_traits<charT> >
class parser_buf : public ::std::basic_streambuf<charT, traits>
{
typedef ::std::basic_streambuf<charT, traits> base_type;
typedef typename base_type::int_type int_type;
typedef typename base_type::char_type char_type;
typedef typename base_type::pos_type pos_type;
typedef ::std::streamsize streamsize;
typedef typename base_type::off_type off_type;
public:
parser_buf() : base_type() { setbuf(0, 0); }
const charT* getnext() { return this->gptr(); }
protected:
std::basic_streambuf<charT, traits>* setbuf(char_type* s, streamsize n) override;
typename parser_buf<charT, traits>::pos_type seekpos(pos_type sp, ::std::ios_base::openmode which) override;
typename parser_buf<charT, traits>::pos_type seekoff(off_type off, ::std::ios_base::seekdir way, ::std::ios_base::openmode which) override;
private:
parser_buf& operator=(const parser_buf&);
parser_buf(const parser_buf&);
};
template<class charT, class traits>
std::basic_streambuf<charT, traits>*
parser_buf<charT, traits>::setbuf(char_type* s, streamsize n)
{
this->setg(s, s, s + n);
return this;
}
template<class charT, class traits>
typename parser_buf<charT, traits>::pos_type
parser_buf<charT, traits>::seekoff(off_type off, ::std::ios_base::seekdir way, ::std::ios_base::openmode which)
{
if(which & ::std::ios_base::out)
return pos_type(off_type(-1));
std::ptrdiff_t size = this->egptr() - this->eback();
std::ptrdiff_t pos = this->gptr() - this->eback();
charT* g = this->eback();
switch(static_cast<std::intmax_t>(way))
{
case ::std::ios_base::beg:
if((off < 0) || (off > size))
return pos_type(off_type(-1));
else
this->setg(g, g + off, g + size);
break;
case ::std::ios_base::end:
if((off < 0) || (off > size))
return pos_type(off_type(-1));
else
this->setg(g, g + size - off, g + size);
break;
case ::std::ios_base::cur:
{
std::ptrdiff_t newpos = static_cast<std::ptrdiff_t>(pos + off);
if((newpos < 0) || (newpos > size))
return pos_type(off_type(-1));
else
this->setg(g, g + newpos, g + size);
break;
}
default: ;
}
#ifdef BOOST_REGEX_MSVC
#pragma warning(push)
#pragma warning(disable:4244)
#endif
return static_cast<pos_type>(this->gptr() - this->eback());
#ifdef BOOST_REGEX_MSVC
#pragma warning(pop)
#endif
}
template<class charT, class traits>
typename parser_buf<charT, traits>::pos_type
parser_buf<charT, traits>::seekpos(pos_type sp, ::std::ios_base::openmode which)
{
if(which & ::std::ios_base::out)
return pos_type(off_type(-1));
off_type size = static_cast<off_type>(this->egptr() - this->eback());
charT* g = this->eback();
if(off_type(sp) <= size)
{
this->setg(g, g + off_type(sp), g + size);
}
return pos_type(off_type(-1));
}
//
// class cpp_regex_traits_base:
// acts as a container for locale and the facets we are using.
//
template <class charT>
struct cpp_regex_traits_base
{
cpp_regex_traits_base(const std::locale& l)
{ (void)imbue(l); }
std::locale imbue(const std::locale& l);
std::locale m_locale;
std::ctype<charT> const* m_pctype;
std::messages<charT> const* m_pmessages;
std::collate<charT> const* m_pcollate;
bool operator<(const cpp_regex_traits_base& b)const
{
if(m_pctype == b.m_pctype)
{
if(m_pmessages == b.m_pmessages)
{
return m_pcollate < b.m_pcollate;
}
return m_pmessages < b.m_pmessages;
}
return m_pctype < b.m_pctype;
}
bool operator==(const cpp_regex_traits_base& b)const
{
return (m_pctype == b.m_pctype)
&& (m_pmessages == b.m_pmessages)
&& (m_pcollate == b.m_pcollate);
}
};
template <class charT>
std::locale cpp_regex_traits_base<charT>::imbue(const std::locale& l)
{
std::locale result(m_locale);
m_locale = l;
m_pctype = &std::use_facet<std::ctype<charT>>(l);
m_pmessages = std::has_facet<std::messages<charT> >(l) ? &std::use_facet<std::messages<charT> >(l) : 0;
m_pcollate = &std::use_facet<std::collate<charT> >(l);
return result;
}
//
// class cpp_regex_traits_char_layer:
// implements methods that require specialization for narrow characters:
//
template <class charT>
class cpp_regex_traits_char_layer : public cpp_regex_traits_base<charT>
{
typedef std::basic_string<charT> string_type;
typedef std::map<charT, regex_constants::syntax_type> map_type;
typedef typename map_type::const_iterator map_iterator_type;
public:
cpp_regex_traits_char_layer(const std::locale& l)
: cpp_regex_traits_base<charT>(l)
{
init();
}
cpp_regex_traits_char_layer(const cpp_regex_traits_base<charT>& b)
: cpp_regex_traits_base<charT>(b)
{
init();
}
void init();
regex_constants::syntax_type syntax_type(charT c)const
{
map_iterator_type i = m_char_map.find(c);
return ((i == m_char_map.end()) ? 0 : i->second);
}
regex_constants::escape_syntax_type escape_syntax_type(charT c) const
{
map_iterator_type i = m_char_map.find(c);
if(i == m_char_map.end())
{
if(this->m_pctype->is(std::ctype_base::lower, c)) return regex_constants::escape_type_class;
if(this->m_pctype->is(std::ctype_base::upper, c)) return regex_constants::escape_type_not_class;
return 0;
}
return i->second;
}
private:
string_type get_default_message(regex_constants::syntax_type);
// TODO: use a hash table when available!
map_type m_char_map;
};
template <class charT>
void cpp_regex_traits_char_layer<charT>::init()
{
// we need to start by initialising our syntax map so we know which
// character is used for which purpose:
#ifndef __IBMCPP__
typename std::messages<charT>::catalog cat = static_cast<std::messages<char>::catalog>(-1);
#else
typename std::messages<charT>::catalog cat = reinterpret_cast<std::messages<char>::catalog>(-1);
#endif
std::string cat_name(cpp_regex_traits<charT>::get_catalog_name());
if((!cat_name.empty()) && (this->m_pmessages != 0))
{
cat = this->m_pmessages->open(
cat_name,
this->m_locale);
if((int)cat < 0)
{
std::string m("Unable to open message catalog: ");
std::runtime_error err(m + cat_name);
boost::BOOST_REGEX_DETAIL_NS::raise_runtime_error(err);
}
}
//
// if we have a valid catalog then load our messages:
//
if((int)cat >= 0)
{
#ifndef BOOST_NO_EXCEPTIONS
try{
#endif
for(regex_constants::syntax_type i = 1; i < regex_constants::syntax_max; ++i)
{
string_type mss = this->m_pmessages->get(cat, 0, i, get_default_message(i));
for(typename string_type::size_type j = 0; j < mss.size(); ++j)
{
m_char_map[mss[j]] = i;
}
}
this->m_pmessages->close(cat);
#ifndef BOOST_NO_EXCEPTIONS
}
catch(...)
{
if(this->m_pmessages)
this->m_pmessages->close(cat);
throw;
}
#endif
}
else
{
for(regex_constants::syntax_type i = 1; i < regex_constants::syntax_max; ++i)
{
const char* ptr = get_default_syntax(i);
while(ptr && *ptr)
{
m_char_map[this->m_pctype->widen(*ptr)] = i;
++ptr;
}
}
}
}
template <class charT>
typename cpp_regex_traits_char_layer<charT>::string_type
cpp_regex_traits_char_layer<charT>::get_default_message(regex_constants::syntax_type i)
{
const char* ptr = get_default_syntax(i);
string_type result;
while(ptr && *ptr)
{
result.append(1, this->m_pctype->widen(*ptr));
++ptr;
}
return result;
}
//
// specialized version for narrow characters:
//
template <>
class cpp_regex_traits_char_layer<char> : public cpp_regex_traits_base<char>
{
typedef std::string string_type;
public:
cpp_regex_traits_char_layer(const std::locale& l)
: cpp_regex_traits_base<char>(l)
{
init();
}
cpp_regex_traits_char_layer(const cpp_regex_traits_base<char>& l)
: cpp_regex_traits_base<char>(l)
{
init();
}
regex_constants::syntax_type syntax_type(char c)const
{
return m_char_map[static_cast<unsigned char>(c)];
}
regex_constants::escape_syntax_type escape_syntax_type(char c) const
{
return m_char_map[static_cast<unsigned char>(c)];
}
private:
regex_constants::syntax_type m_char_map[1u << CHAR_BIT];
void init();
};
//
// class cpp_regex_traits_implementation:
// provides pimpl implementation for cpp_regex_traits.
//
template <class charT>
class cpp_regex_traits_implementation : public cpp_regex_traits_char_layer<charT>
{
public:
typedef typename cpp_regex_traits<charT>::char_class_type char_class_type;
typedef typename std::ctype<charT>::mask native_mask_type;
typedef typename std::make_unsigned<native_mask_type>::type unsigned_native_mask_type;
static const char_class_type mask_blank = 1u << 24;
static const char_class_type mask_word = 1u << 25;
static const char_class_type mask_unicode = 1u << 26;
static const char_class_type mask_horizontal = 1u << 27;
static const char_class_type mask_vertical = 1u << 28;
typedef std::basic_string<charT> string_type;
typedef charT char_type;
//cpp_regex_traits_implementation();
cpp_regex_traits_implementation(const std::locale& l)
: cpp_regex_traits_char_layer<charT>(l)
{
init();
}
cpp_regex_traits_implementation(const cpp_regex_traits_base<charT>& l)
: cpp_regex_traits_char_layer<charT>(l)
{
init();
}
std::string error_string(regex_constants::error_type n) const
{
if(!m_error_strings.empty())
{
std::map<int, std::string>::const_iterator p = m_error_strings.find(n);
return (p == m_error_strings.end()) ? std::string(get_default_error_string(n)) : p->second;
}
return get_default_error_string(n);
}
char_class_type lookup_classname(const charT* p1, const charT* p2) const
{
char_class_type result = lookup_classname_imp(p1, p2);
if(result == 0)
{
string_type temp(p1, p2);
this->m_pctype->tolower(&*temp.begin(), &*temp.begin() + temp.size());
result = lookup_classname_imp(&*temp.begin(), &*temp.begin() + temp.size());
}
return result;
}
string_type lookup_collatename(const charT* p1, const charT* p2) const;
string_type transform_primary(const charT* p1, const charT* p2) const;
string_type transform(const charT* p1, const charT* p2) const;
private:
std::map<int, std::string> m_error_strings; // error messages indexed by numberic ID
std::map<string_type, char_class_type> m_custom_class_names; // character class names
std::map<string_type, string_type> m_custom_collate_names; // collating element names
unsigned m_collate_type; // the form of the collation string
charT m_collate_delim; // the collation group delimiter
//
// helpers:
//
char_class_type lookup_classname_imp(const charT* p1, const charT* p2) const;
void init();
};
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type const cpp_regex_traits_implementation<charT>::mask_blank;
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type const cpp_regex_traits_implementation<charT>::mask_word;
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type const cpp_regex_traits_implementation<charT>::mask_unicode;
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type const cpp_regex_traits_implementation<charT>::mask_vertical;
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type const cpp_regex_traits_implementation<charT>::mask_horizontal;
template <class charT>
typename cpp_regex_traits_implementation<charT>::string_type
cpp_regex_traits_implementation<charT>::transform_primary(const charT* p1, const charT* p2) const
{
//
// PRECONDITIONS:
//
// A bug in gcc 3.2 (and maybe other versions as well) treats
// p1 as a null terminated string, for efficiency reasons
// we work around this elsewhere, but just assert here that
// we adhere to gcc's (buggy) preconditions...
//
BOOST_REGEX_ASSERT(*p2 == 0);
string_type result;
#if defined(_CPPLIB_VER)
//
// A bug in VC11 and 12 causes the program to hang if we pass a null-string
// to std::collate::transform, but only for certain locales :-(
// Probably effects Intel and Clang or any compiler using the VC std library (Dinkumware).
//
if(*p1 == 0)
{
return string_type(1, charT(0));
}
#endif
//
// swallowing all exceptions here is a bad idea
// however at least one std lib will always throw
// std::bad_alloc for certain arguments...
//
#ifndef BOOST_NO_EXCEPTIONS
try{
#endif
//
// What we do here depends upon the format of the sort key returned by
// sort key returned by this->transform:
//
switch(m_collate_type)
{
case sort_C:
case sort_unknown:
// the best we can do is translate to lower case, then get a regular sort key:
{
result.assign(p1, p2);
this->m_pctype->tolower(&*result.begin(), &*result.begin() + result.size());
result = this->m_pcollate->transform(&*result.begin(), &*result.begin() + result.size());
break;
}
case sort_fixed:
{
// get a regular sort key, and then truncate it:
result.assign(this->m_pcollate->transform(p1, p2));
result.erase(this->m_collate_delim);
break;
}
case sort_delim:
// get a regular sort key, and then truncate everything after the delim:
result.assign(this->m_pcollate->transform(p1, p2));
std::size_t i;
for(i = 0; i < result.size(); ++i)
{
if(result[i] == m_collate_delim)
break;
}
result.erase(i);
break;
}
#ifndef BOOST_NO_EXCEPTIONS
}catch(...){}
#endif
while((!result.empty()) && (charT(0) == *result.rbegin()))
result.erase(result.size() - 1);
if(result.empty())
{
// character is ignorable at the primary level:
result = string_type(1, charT(0));
}
return result;
}
template <class charT>
typename cpp_regex_traits_implementation<charT>::string_type
cpp_regex_traits_implementation<charT>::transform(const charT* p1, const charT* p2) const
{
//
// PRECONDITIONS:
//
// A bug in gcc 3.2 (and maybe other versions as well) treats
// p1 as a null terminated string, for efficiency reasons
// we work around this elsewhere, but just assert here that
// we adhere to gcc's (buggy) preconditions...
//
BOOST_REGEX_ASSERT(*p2 == 0);
//
// swallowing all exceptions here is a bad idea
// however at least one std lib will always throw
// std::bad_alloc for certain arguments...
//
string_type result, result2;
#if defined(_CPPLIB_VER)
//
// A bug in VC11 and 12 causes the program to hang if we pass a null-string
// to std::collate::transform, but only for certain locales :-(
// Probably effects Intel and Clang or any compiler using the VC std library (Dinkumware).
//
if(*p1 == 0)
{
return result;
}
#endif
#ifndef BOOST_NO_EXCEPTIONS
try{
#endif
result = this->m_pcollate->transform(p1, p2);
//
// some implementations (Dinkumware) append unnecessary trailing \0's:
while((!result.empty()) && (charT(0) == *result.rbegin()))
result.erase(result.size() - 1);
//
// We may have NULL's used as separators between sections of the collate string,
// an example would be Boost.Locale. We have no way to detect this case via
// #defines since this can be used with any compiler/platform combination.
// Unfortunately our state machine (which was devised when all implementations
// used underlying C language API's) can't cope with that case. One workaround
// is to replace each character with 2, fortunately this code isn't used that
// much as this is now slower than before :-(
//
typedef typename std::make_unsigned<charT>::type uchar_type;
result2.reserve(result.size() * 2 + 2);
for(unsigned i = 0; i < result.size(); ++i)
{
if(static_cast<uchar_type>(result[i]) == (std::numeric_limits<uchar_type>::max)())
{
result2.append(1, charT((std::numeric_limits<uchar_type>::max)())).append(1, charT('b'));
}
else
{
result2.append(1, static_cast<charT>(1 + static_cast<uchar_type>(result[i]))).append(1, charT('b') - 1);
}
}
BOOST_REGEX_ASSERT(std::find(result2.begin(), result2.end(), charT(0)) == result2.end());
#ifndef BOOST_NO_EXCEPTIONS
}
catch(...)
{
}
#endif
return result2;
}
template <class charT>
typename cpp_regex_traits_implementation<charT>::string_type
cpp_regex_traits_implementation<charT>::lookup_collatename(const charT* p1, const charT* p2) const
{
typedef typename std::map<string_type, string_type>::const_iterator iter_type;
if(!m_custom_collate_names.empty())
{
iter_type pos = m_custom_collate_names.find(string_type(p1, p2));
if(pos != m_custom_collate_names.end())
return pos->second;
}
std::string name(p1, p2);
name = lookup_default_collate_name(name);
if(!name.empty())
return string_type(name.begin(), name.end());
if(p2 - p1 == 1)
return string_type(1, *p1);
return string_type();
}
template <class charT>
void cpp_regex_traits_implementation<charT>::init()
{
#ifndef __IBMCPP__
typename std::messages<charT>::catalog cat = static_cast<std::messages<char>::catalog>(-1);
#else
typename std::messages<charT>::catalog cat = reinterpret_cast<std::messages<char>::catalog>(-1);
#endif
std::string cat_name(cpp_regex_traits<charT>::get_catalog_name());
if((!cat_name.empty()) && (this->m_pmessages != 0))
{
cat = this->m_pmessages->open(
cat_name,
this->m_locale);
if((int)cat < 0)
{
std::string m("Unable to open message catalog: ");
std::runtime_error err(m + cat_name);
boost::BOOST_REGEX_DETAIL_NS::raise_runtime_error(err);
}
}
//
// if we have a valid catalog then load our messages:
//
if((int)cat >= 0)
{
//
// Error messages:
//
for(boost::regex_constants::error_type i = static_cast<boost::regex_constants::error_type>(0);
i <= boost::regex_constants::error_unknown;
i = static_cast<boost::regex_constants::error_type>(i + 1))
{
const char* p = get_default_error_string(i);
string_type default_message;
while(*p)
{
default_message.append(1, this->m_pctype->widen(*p));
++p;
}
string_type s = this->m_pmessages->get(cat, 0, i+200, default_message);
std::string result;
for(std::string::size_type j = 0; j < s.size(); ++j)
{
result.append(1, this->m_pctype->narrow(s[j], 0));
}
m_error_strings[i] = result;
}
//
// Custom class names:
//
static const char_class_type masks[16] =
{
static_cast<unsigned_native_mask_type>(std::ctype<charT>::alnum),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::alpha),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::cntrl),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::digit),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::graph),
cpp_regex_traits_implementation<charT>::mask_horizontal,
static_cast<unsigned_native_mask_type>(std::ctype<charT>::lower),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::print),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::punct),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::space),
static_cast<unsigned_native_mask_type>(std::ctype<charT>::upper),
cpp_regex_traits_implementation<charT>::mask_vertical,
static_cast<unsigned_native_mask_type>(std::ctype<charT>::xdigit),
cpp_regex_traits_implementation<charT>::mask_blank,
cpp_regex_traits_implementation<charT>::mask_word,
cpp_regex_traits_implementation<charT>::mask_unicode,
};
static const string_type null_string;
for(unsigned int j = 0; j <= 13; ++j)
{
string_type s(this->m_pmessages->get(cat, 0, j+300, null_string));
if(!s.empty())
this->m_custom_class_names[s] = masks[j];
}
}
//
// get the collation format used by m_pcollate:
//
m_collate_type = BOOST_REGEX_DETAIL_NS::find_sort_syntax(this, &m_collate_delim);
}
template <class charT>
typename cpp_regex_traits_implementation<charT>::char_class_type
cpp_regex_traits_implementation<charT>::lookup_classname_imp(const charT* p1, const charT* p2) const
{
static const char_class_type masks[22] =
{
0,
static_cast<unsigned_native_mask_type>(std::ctype<char>::alnum),
static_cast<unsigned_native_mask_type>(std::ctype<char>::alpha),
cpp_regex_traits_implementation<charT>::mask_blank,
static_cast<unsigned_native_mask_type>(std::ctype<char>::cntrl),
static_cast<unsigned_native_mask_type>(std::ctype<char>::digit),
static_cast<unsigned_native_mask_type>(std::ctype<char>::digit),
static_cast<unsigned_native_mask_type>(std::ctype<char>::graph),
cpp_regex_traits_implementation<charT>::mask_horizontal,
static_cast<unsigned_native_mask_type>(std::ctype<char>::lower),
static_cast<unsigned_native_mask_type>(std::ctype<char>::lower),
static_cast<unsigned_native_mask_type>(std::ctype<char>::print),
static_cast<unsigned_native_mask_type>(std::ctype<char>::punct),
static_cast<unsigned_native_mask_type>(std::ctype<char>::space),
static_cast<unsigned_native_mask_type>(std::ctype<char>::space),
static_cast<unsigned_native_mask_type>(std::ctype<char>::upper),
cpp_regex_traits_implementation<charT>::mask_unicode,
static_cast<unsigned_native_mask_type>(std::ctype<char>::upper),
cpp_regex_traits_implementation<charT>::mask_vertical,
static_cast<unsigned_native_mask_type>(std::ctype<char>::alnum) | cpp_regex_traits_implementation<charT>::mask_word,
static_cast<unsigned_native_mask_type>(std::ctype<char>::alnum) | cpp_regex_traits_implementation<charT>::mask_word,
static_cast<unsigned_native_mask_type>(std::ctype<char>::xdigit),
};
if(!m_custom_class_names.empty())
{
typedef typename std::map<std::basic_string<charT>, char_class_type>::const_iterator map_iter;
map_iter pos = m_custom_class_names.find(string_type(p1, p2));
if(pos != m_custom_class_names.end())
return pos->second;
}
std::size_t state_id = 1 + BOOST_REGEX_DETAIL_NS::get_default_class_id(p1, p2);
BOOST_REGEX_ASSERT(state_id < sizeof(masks) / sizeof(masks[0]));
return masks[state_id];
}
template <class charT>
inline std::shared_ptr<const cpp_regex_traits_implementation<charT> > create_cpp_regex_traits(const std::locale& l)
{
cpp_regex_traits_base<charT> key(l);
return ::boost::object_cache<cpp_regex_traits_base<charT>, cpp_regex_traits_implementation<charT> >::get(key, 5);
}
} // BOOST_REGEX_DETAIL_NS
template <class charT>
class cpp_regex_traits
{
private:
typedef std::ctype<charT> ctype_type;
public:
typedef charT char_type;
typedef std::size_t size_type;
typedef std::basic_string<char_type> string_type;
typedef std::locale locale_type;
typedef std::uint_least32_t char_class_type;
struct boost_extensions_tag{};
cpp_regex_traits()
: m_pimpl(BOOST_REGEX_DETAIL_NS::create_cpp_regex_traits<charT>(std::locale()))
{ }
static size_type length(const char_type* p)
{
return std::char_traits<charT>::length(p);
}
regex_constants::syntax_type syntax_type(charT c)const
{
return m_pimpl->syntax_type(c);
}
regex_constants::escape_syntax_type escape_syntax_type(charT c) const
{
return m_pimpl->escape_syntax_type(c);
}
charT translate(charT c) const
{
return c;
}
charT translate_nocase(charT c) const
{
return m_pimpl->m_pctype->tolower(c);
}
charT translate(charT c, bool icase) const
{
return icase ? m_pimpl->m_pctype->tolower(c) : c;
}
charT tolower(charT c) const
{
return m_pimpl->m_pctype->tolower(c);
}
charT toupper(charT c) const
{
return m_pimpl->m_pctype->toupper(c);
}
string_type transform(const charT* p1, const charT* p2) const
{
return m_pimpl->transform(p1, p2);
}
string_type transform_primary(const charT* p1, const charT* p2) const
{
return m_pimpl->transform_primary(p1, p2);
}
char_class_type lookup_classname(const charT* p1, const charT* p2) const
{
return m_pimpl->lookup_classname(p1, p2);
}
string_type lookup_collatename(const charT* p1, const charT* p2) const
{
return m_pimpl->lookup_collatename(p1, p2);
}
bool isctype(charT c, char_class_type f) const
{
typedef typename std::ctype<charT>::mask ctype_mask;
static const ctype_mask mask_base =
static_cast<ctype_mask>(
std::ctype<charT>::alnum
| std::ctype<charT>::alpha
| std::ctype<charT>::cntrl
| std::ctype<charT>::digit
| std::ctype<charT>::graph
| std::ctype<charT>::lower
| std::ctype<charT>::print
| std::ctype<charT>::punct
| std::ctype<charT>::space
| std::ctype<charT>::upper
| std::ctype<charT>::xdigit);
if((f & mask_base)
&& (m_pimpl->m_pctype->is(
static_cast<ctype_mask>(f & mask_base), c)))
return true;
else if((f & BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_unicode) && BOOST_REGEX_DETAIL_NS::is_extended(c))
return true;
else if((f & BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_word) && (c == '_'))
return true;
else if((f & BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_blank)
&& m_pimpl->m_pctype->is(std::ctype<charT>::space, c)
&& !BOOST_REGEX_DETAIL_NS::is_separator(c))
return true;
else if((f & BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_vertical)
&& (::boost::BOOST_REGEX_DETAIL_NS::is_separator(c) || (c == '\v')))
return true;
else if((f & BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_horizontal)
&& this->isctype(c, std::ctype<charT>::space) && !this->isctype(c, BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT>::mask_vertical))
return true;
#ifdef __CYGWIN__
//
// Cygwin has a buggy ctype facet, see https://www.cygwin.com/ml/cygwin/2012-08/msg00178.html:
//
else if((f & std::ctype<charT>::xdigit) == std::ctype<charT>::xdigit)
{
if((c >= 'a') && (c <= 'f'))
return true;
if((c >= 'A') && (c <= 'F'))
return true;
}
#endif
return false;
}
std::intmax_t toi(const charT*& p1, const charT* p2, int radix)const;
int value(charT c, int radix)const
{
const charT* pc = &c;
return (int)toi(pc, pc + 1, radix);
}
locale_type imbue(locale_type l)
{
std::locale result(getloc());
m_pimpl = BOOST_REGEX_DETAIL_NS::create_cpp_regex_traits<charT>(l);
return result;
}
locale_type getloc()const
{
return m_pimpl->m_locale;
}
std::string error_string(regex_constants::error_type n) const
{
return m_pimpl->error_string(n);
}
//
// extension:
// set the name of the message catalog in use (defaults to "boost_regex").
//
static std::string catalog_name(const std::string& name);
static std::string get_catalog_name();
private:
std::shared_ptr<const BOOST_REGEX_DETAIL_NS::cpp_regex_traits_implementation<charT> > m_pimpl;
//
// catalog name handler:
//
static std::string& get_catalog_name_inst();
#ifdef BOOST_HAS_THREADS
static std::mutex& get_mutex_inst();
#endif
};
template <class charT>
std::intmax_t cpp_regex_traits<charT>::toi(const charT*& first, const charT* last, int radix)const
{
BOOST_REGEX_DETAIL_NS::parser_buf<charT> sbuf; // buffer for parsing numbers.
std::basic_istream<charT> is(&sbuf); // stream for parsing numbers.
// we do NOT want to parse any thousands separators inside the stream:
last = std::find(first, last, std::use_facet<std::numpunct<charT>>(is.getloc()).thousands_sep());
sbuf.pubsetbuf(const_cast<charT*>(static_cast<const charT*>(first)), static_cast<std::streamsize>(last-first));
is.clear();
if(std::abs(radix) == 16) is >> std::hex;
else if(std::abs(radix) == 8) is >> std::oct;
else is >> std::dec;
std::intmax_t val;
if(is >> val)
{
first = first + ((last - first) - sbuf.in_avail());
return val;
}
else
return -1;
}
template <class charT>
std::string cpp_regex_traits<charT>::catalog_name(const std::string& name)
{
#ifdef BOOST_HAS_THREADS
std::lock_guard<std::mutex> lk(get_mutex_inst());
#endif
std::string result(get_catalog_name_inst());
get_catalog_name_inst() = name;
return result;
}
template <class charT>
std::string& cpp_regex_traits<charT>::get_catalog_name_inst()
{
static std::string s_name;
return s_name;
}
template <class charT>
std::string cpp_regex_traits<charT>::get_catalog_name()
{
#ifdef BOOST_HAS_THREADS
std::lock_guard<std::mutex> lk(get_mutex_inst());
#endif
std::string result(get_catalog_name_inst());
return result;
}
#ifdef BOOST_HAS_THREADS
template <class charT>
std::mutex& cpp_regex_traits<charT>::get_mutex_inst()
{
static std::mutex s_mutex;
return s_mutex;
}
#endif
namespace BOOST_REGEX_DETAIL_NS {
inline void cpp_regex_traits_char_layer<char>::init()
{
// we need to start by initialising our syntax map so we know which
// character is used for which purpose:
std::memset(m_char_map, 0, sizeof(m_char_map));
#ifndef __IBMCPP__
std::messages<char>::catalog cat = static_cast<std::messages<char>::catalog>(-1);
#else
std::messages<char>::catalog cat = reinterpret_cast<std::messages<char>::catalog>(-1);
#endif
std::string cat_name(cpp_regex_traits<char>::get_catalog_name());
if ((!cat_name.empty()) && (m_pmessages != 0))
{
cat = this->m_pmessages->open(
cat_name,
this->m_locale);
if ((int)cat < 0)
{
std::string m("Unable to open message catalog: ");
std::runtime_error err(m + cat_name);
boost::BOOST_REGEX_DETAIL_NS::raise_runtime_error(err);
}
}
//
// if we have a valid catalog then load our messages:
//
if ((int)cat >= 0)
{
#ifndef BOOST_NO_EXCEPTIONS
try {
#endif
for (regex_constants::syntax_type i = 1; i < regex_constants::syntax_max; ++i)
{
string_type mss = this->m_pmessages->get(cat, 0, i, get_default_syntax(i));
for (string_type::size_type j = 0; j < mss.size(); ++j)
{
m_char_map[static_cast<unsigned char>(mss[j])] = i;
}
}
this->m_pmessages->close(cat);
#ifndef BOOST_NO_EXCEPTIONS
}
catch (...)
{
this->m_pmessages->close(cat);
throw;
}
#endif
}
else
{
for (regex_constants::syntax_type j = 1; j < regex_constants::syntax_max; ++j)
{
const char* ptr = get_default_syntax(j);
while (ptr && *ptr)
{
m_char_map[static_cast<unsigned char>(*ptr)] = j;
++ptr;
}
}
}
//
// finish off by calculating our escape types:
//
unsigned char i = 'A';
do
{
if (m_char_map[i] == 0)
{
if (this->m_pctype->is(std::ctype_base::lower, i))
m_char_map[i] = regex_constants::escape_type_class;
else if (this->m_pctype->is(std::ctype_base::upper, i))
m_char_map[i] = regex_constants::escape_type_not_class;
}
} while (0xFF != i++);
}
} // namespace detail
} // boost
#ifdef BOOST_REGEX_MSVC
#pragma warning(pop)
#endif
#endif