boost/geometry/algorithms/detail/convex_hull/graham_andrew.hpp
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2014-2023.
// Modifications copyright (c) 2014-2023 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_CONVEX_HULL_GRAHAM_ANDREW_HPP
#define BOOST_GEOMETRY_ALGORITHMS_CONVEX_HULL_GRAHAM_ANDREW_HPP
#include <cstddef>
#include <algorithm>
#include <vector>
#include <boost/range/size.hpp>
#include <boost/geometry/algorithms/detail/for_each_range.hpp>
#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/closure.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/policies/compare.hpp>
#include <boost/geometry/strategies/convex_hull/cartesian.hpp>
#include <boost/geometry/strategies/convex_hull/geographic.hpp>
#include <boost/geometry/strategies/convex_hull/spherical.hpp>
#include <boost/geometry/util/range.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace convex_hull
{
// TODO: All of the copies could be avoided if this function stored pointers to points.
// But would it be possible considering that a range can return proxy reference?
template <typename InputProxy, typename Point, typename Less>
inline void get_extremes(InputProxy const& in_proxy,
Point& left, Point& right,
Less const& less)
{
bool first = true;
in_proxy.for_each_range([&](auto const& range)
{
if (boost::empty(range))
{
return;
}
// First iterate through this range
// (this two-stage approach avoids many point copies,
// because iterators are kept in memory. Because iterators are
// not persistent (in MSVC) this approach is not applicable
// for more ranges together)
auto left_it = boost::begin(range);
auto right_it = boost::begin(range);
auto it = boost::begin(range);
for (++it; it != boost::end(range); ++it)
{
if (less(*it, *left_it))
{
left_it = it;
}
if (less(*right_it, *it))
{
right_it = it;
}
}
// Then compare with earlier
if (first)
{
// First time, assign left/right
left = *left_it;
right = *right_it;
first = false;
}
else
{
// Next time, check if this range was left/right from
// the extremes already collected
if (less(*left_it, left))
{
left = *left_it;
}
if (less(right, *right_it))
{
right = *right_it;
}
}
});
}
template <typename InputProxy, typename Point, typename Container, typename SideStrategy>
inline void assign_ranges(InputProxy const& in_proxy,
Point const& most_left, Point const& most_right,
Container& lower_points, Container& upper_points,
SideStrategy const& side)
{
in_proxy.for_each_range([&](auto const& range)
{
// Put points in one of the two output sequences
for (auto it = boost::begin(range); it != boost::end(range); ++it)
{
// check if it is lying most_left or most_right from the line
int dir = side.apply(most_left, most_right, *it);
switch(dir)
{
case 1 : // left side
upper_points.push_back(*it);
break;
case -1 : // right side
lower_points.push_back(*it);
break;
// 0: on line most_left-most_right,
// or most_left, or most_right,
// -> all never part of hull
}
}
});
}
/*!
\brief Graham scan algorithm to calculate convex hull
*/
template <typename InputPoint>
class graham_andrew
{
typedef InputPoint point_type;
typedef typename std::vector<point_type> container_type;
class partitions
{
friend class graham_andrew;
container_type m_lower_hull;
container_type m_upper_hull;
container_type m_copied_input;
};
public:
template <typename InputProxy, typename OutputRing, typename Strategy>
static void apply(InputProxy const& in_proxy, OutputRing & out_ring, Strategy& strategy)
{
partitions state;
apply(in_proxy, state, strategy);
result(state,
range::back_inserter(out_ring),
geometry::point_order<OutputRing>::value == clockwise,
geometry::closure<OutputRing>::value != open);
}
private:
template <typename InputProxy, typename Strategy>
static void apply(InputProxy const& in_proxy, partitions& state, Strategy& strategy)
{
// First pass.
// Get min/max (in most cases left / right) points
// This makes use of the geometry::less/greater predicates
// For the left boundary it is important that multiple points
// are sorted from bottom to top. Therefore the less predicate
// does not take the x-only template parameter (this fixes ticket #6019.
// For the right boundary it is not necessary (though also not harmful),
// because points are sorted from bottom to top in a later stage.
// For symmetry and to get often more balanced lower/upper halves
// we keep it.
point_type most_left, most_right;
geometry::less_exact<point_type, -1, Strategy> less;
detail::convex_hull::get_extremes(in_proxy, most_left, most_right, less);
container_type lower_points, upper_points;
auto const side_strategy = strategy.side();
// Bounding left/right points
// Second pass, now that extremes are found, assign all points
// in either lower, either upper
detail::convex_hull::assign_ranges(in_proxy, most_left, most_right,
lower_points, upper_points,
side_strategy);
// Sort both collections, first on x(, then on y)
std::sort(boost::begin(lower_points), boost::end(lower_points), less);
std::sort(boost::begin(upper_points), boost::end(upper_points), less);
// And decide which point should be in the final hull
build_half_hull<-1>(lower_points, state.m_lower_hull,
most_left, most_right,
side_strategy);
build_half_hull<1>(upper_points, state.m_upper_hull,
most_left, most_right,
side_strategy);
}
template <int Factor, typename SideStrategy>
static inline void build_half_hull(container_type const& input,
container_type& output,
point_type const& left, point_type const& right,
SideStrategy const& side)
{
output.push_back(left);
for (auto const& i : input)
{
add_to_hull<Factor>(i, output, side);
}
add_to_hull<Factor>(right, output, side);
}
template <int Factor, typename SideStrategy>
static inline void add_to_hull(point_type const& p, container_type& output,
SideStrategy const& side)
{
output.push_back(p);
std::size_t output_size = output.size();
while (output_size >= 3)
{
auto rit = output.rbegin();
point_type const last = *rit++;
point_type const& last2 = *rit++;
if (Factor * side.apply(*rit, last, last2) <= 0)
{
// Remove last two points from stack, and add last again
// This is much faster then erasing the one but last.
output.pop_back();
output.pop_back();
output.push_back(last);
output_size--;
}
else
{
return;
}
}
}
template <typename OutputIterator>
static void result(partitions const& state, OutputIterator out, bool clockwise, bool closed)
{
if (clockwise)
{
output_ranges(state.m_upper_hull, state.m_lower_hull, out, closed);
}
else
{
output_ranges(state.m_lower_hull, state.m_upper_hull, out, closed);
}
}
template <typename OutputIterator>
static inline void output_ranges(container_type const& first,
container_type const& second,
OutputIterator out,
bool closed)
{
std::copy(boost::begin(first), boost::end(first), out);
BOOST_GEOMETRY_ASSERT(closed ? !boost::empty(second) : boost::size(second) > 1);
std::copy(++boost::rbegin(second), // skip the first Point
closed ? boost::rend(second) : --boost::rend(second), // skip the last Point if open
out);
typedef typename boost::range_size<container_type>::type size_type;
size_type const count = boost::size(first) + boost::size(second) - 1;
// count describes a closed case but comparison with min size of closed
// gives the result compatible also with open
// here core_detail::closure::minimum_ring_size<closed> could be used
if (count < 4)
{
// there should be only one missing
*out++ = *boost::begin(first);
}
}
};
}} // namespace detail::convex_hull
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_CONVEX_HULL_GRAHAM_ANDREW_HPP