boost/graph/max_cardinality_matching.hpp
//=======================================================================
// Copyright (c) 2005 Aaron Windsor
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//=======================================================================
#ifndef BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
#define BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
#include <vector>
#include <list>
#include <deque>
#include <algorithm> // for std::sort and std::stable_sort
#include <utility> // for std::pair
#include <boost/property_map/property_map.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/assert.hpp>
namespace boost
{
namespace graph
{
namespace detail
{
enum VERTEX_STATE
{
V_EVEN,
V_ODD,
V_UNREACHED
};
}
} // end namespace graph::detail
template < typename Graph, typename MateMap, typename VertexIndexMap >
typename graph_traits< Graph >::vertices_size_type matching_size(
const Graph& g, MateMap mate, VertexIndexMap vm)
{
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
v_size_t size_of_matching = 0;
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
{
vertex_descriptor_t v = *vi;
if (get(mate, v) != graph_traits< Graph >::null_vertex()
&& get(vm, v) < get(vm, get(mate, v)))
++size_of_matching;
}
return size_of_matching;
}
template < typename Graph, typename MateMap >
inline typename graph_traits< Graph >::vertices_size_type matching_size(
const Graph& g, MateMap mate)
{
return matching_size(g, mate, get(vertex_index, g));
}
template < typename Graph, typename MateMap, typename VertexIndexMap >
bool is_a_matching(const Graph& g, MateMap mate, VertexIndexMap)
{
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
{
vertex_descriptor_t v = *vi;
if (get(mate, v) != graph_traits< Graph >::null_vertex()
&& v != get(mate, get(mate, v)))
return false;
}
return true;
}
template < typename Graph, typename MateMap >
inline bool is_a_matching(const Graph& g, MateMap mate)
{
return is_a_matching(g, mate, get(vertex_index, g));
}
//***************************************************************************
//***************************************************************************
// Maximum Cardinality Matching Functors
//***************************************************************************
//***************************************************************************
template < typename Graph, typename MateMap,
typename VertexIndexMap = dummy_property_map >
struct no_augmenting_path_finder
{
no_augmenting_path_finder(const Graph&, MateMap, VertexIndexMap) {}
inline bool augment_matching() { return false; }
template < typename PropertyMap > void get_current_matching(PropertyMap) {}
};
template < typename Graph, typename MateMap, typename VertexIndexMap >
class edmonds_augmenting_path_finder
{
// This implementation of Edmonds' matching algorithm closely
// follows Tarjan's description of the algorithm in "Data
// Structures and Network Algorithms."
public:
// generates the type of an iterator property map from vertices to type X
template < typename X > struct map_vertex_to_
{
typedef boost::iterator_property_map<
typename std::vector< X >::iterator, VertexIndexMap >
type;
};
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename std::pair< vertex_descriptor_t, vertex_descriptor_t >
vertex_pair_t;
typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t;
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
typedef typename graph_traits< Graph >::edges_size_type e_size_t;
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
typedef
typename graph_traits< Graph >::out_edge_iterator out_edge_iterator_t;
typedef typename std::deque< vertex_descriptor_t > vertex_list_t;
typedef typename std::vector< edge_descriptor_t > edge_list_t;
typedef typename map_vertex_to_< vertex_descriptor_t >::type
vertex_to_vertex_map_t;
typedef typename map_vertex_to_< int >::type vertex_to_int_map_t;
typedef typename map_vertex_to_< vertex_pair_t >::type
vertex_to_vertex_pair_map_t;
typedef typename map_vertex_to_< v_size_t >::type vertex_to_vsize_map_t;
typedef typename map_vertex_to_< e_size_t >::type vertex_to_esize_map_t;
edmonds_augmenting_path_finder(
const Graph& arg_g, MateMap arg_mate, VertexIndexMap arg_vm)
: g(arg_g)
, vm(arg_vm)
, n_vertices(num_vertices(arg_g))
,
mate_vector(n_vertices)
, ancestor_of_v_vector(n_vertices)
, ancestor_of_w_vector(n_vertices)
, vertex_state_vector(n_vertices)
, origin_vector(n_vertices)
, pred_vector(n_vertices)
, bridge_vector(n_vertices)
, ds_parent_vector(n_vertices)
, ds_rank_vector(n_vertices)
,
mate(mate_vector.begin(), vm)
, ancestor_of_v(ancestor_of_v_vector.begin(), vm)
, ancestor_of_w(ancestor_of_w_vector.begin(), vm)
, vertex_state(vertex_state_vector.begin(), vm)
, origin(origin_vector.begin(), vm)
, pred(pred_vector.begin(), vm)
, bridge(bridge_vector.begin(), vm)
, ds_parent_map(ds_parent_vector.begin(), vm)
, ds_rank_map(ds_rank_vector.begin(), vm)
,
ds(ds_rank_map, ds_parent_map)
{
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
mate[*vi] = get(arg_mate, *vi);
}
bool augment_matching()
{
// As an optimization, some of these values can be saved from one
// iteration to the next instead of being re-initialized each
// iteration, allowing for "lazy blossom expansion." This is not
// currently implemented.
e_size_t timestamp = 0;
even_edges.clear();
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
{
vertex_descriptor_t u = *vi;
origin[u] = u;
pred[u] = u;
ancestor_of_v[u] = 0;
ancestor_of_w[u] = 0;
ds.make_set(u);
if (mate[u] == graph_traits< Graph >::null_vertex())
{
vertex_state[u] = graph::detail::V_EVEN;
out_edge_iterator_t ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end;
++ei)
{
if (target(*ei, g) != u)
{
even_edges.push_back(*ei);
}
}
}
else
vertex_state[u] = graph::detail::V_UNREACHED;
}
// end initializations
vertex_descriptor_t v, w, w_free_ancestor, v_free_ancestor;
w_free_ancestor = graph_traits< Graph >::null_vertex();
v_free_ancestor = graph_traits< Graph >::null_vertex();
bool found_alternating_path = false;
while (!even_edges.empty() && !found_alternating_path)
{
// since we push even edges onto the back of the list as
// they're discovered, taking them off the back will search
// for augmenting paths depth-first.
edge_descriptor_t current_edge = even_edges.back();
even_edges.pop_back();
v = source(current_edge, g);
w = target(current_edge, g);
vertex_descriptor_t v_prime = origin[ds.find_set(v)];
vertex_descriptor_t w_prime = origin[ds.find_set(w)];
// because of the way we put all of the edges on the queue,
// v_prime should be labeled V_EVEN; the following is a
// little paranoid but it could happen...
if (vertex_state[v_prime] != graph::detail::V_EVEN)
{
std::swap(v_prime, w_prime);
std::swap(v, w);
}
if (vertex_state[w_prime] == graph::detail::V_UNREACHED)
{
vertex_state[w_prime] = graph::detail::V_ODD;
vertex_descriptor_t w_prime_mate = mate[w_prime];
vertex_state[w_prime_mate] = graph::detail::V_EVEN;
out_edge_iterator_t ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(w_prime_mate, g);
ei != ei_end; ++ei)
{
if (target(*ei, g) != w_prime_mate)
{
even_edges.push_back(*ei);
}
}
pred[w_prime] = v;
}
// w_prime == v_prime can happen below if we get an edge that has
// been shrunk into a blossom
else if (vertex_state[w_prime] == graph::detail::V_EVEN
&& w_prime != v_prime)
{
vertex_descriptor_t w_up = w_prime;
vertex_descriptor_t v_up = v_prime;
vertex_descriptor_t nearest_common_ancestor
= graph_traits< Graph >::null_vertex();
w_free_ancestor = graph_traits< Graph >::null_vertex();
v_free_ancestor = graph_traits< Graph >::null_vertex();
// We now need to distinguish between the case that
// w_prime and v_prime share an ancestor under the
// "parent" relation, in which case we've found a
// blossom and should shrink it, or the case that
// w_prime and v_prime both have distinct ancestors that
// are free, in which case we've found an alternating
// path between those two ancestors.
++timestamp;
while (nearest_common_ancestor
== graph_traits< Graph >::null_vertex()
&& (v_free_ancestor == graph_traits< Graph >::null_vertex()
|| w_free_ancestor
== graph_traits< Graph >::null_vertex()))
{
ancestor_of_w[w_up] = timestamp;
ancestor_of_v[v_up] = timestamp;
if (w_free_ancestor == graph_traits< Graph >::null_vertex())
w_up = parent(w_up);
if (v_free_ancestor == graph_traits< Graph >::null_vertex())
v_up = parent(v_up);
if (mate[v_up] == graph_traits< Graph >::null_vertex())
v_free_ancestor = v_up;
if (mate[w_up] == graph_traits< Graph >::null_vertex())
w_free_ancestor = w_up;
if (ancestor_of_w[v_up] == timestamp)
nearest_common_ancestor = v_up;
else if (ancestor_of_v[w_up] == timestamp)
nearest_common_ancestor = w_up;
else if (v_free_ancestor == w_free_ancestor
&& v_free_ancestor
!= graph_traits< Graph >::null_vertex())
nearest_common_ancestor = v_up;
}
if (nearest_common_ancestor
== graph_traits< Graph >::null_vertex())
found_alternating_path = true; // to break out of the loop
else
{
// shrink the blossom
link_and_set_bridges(
w_prime, nearest_common_ancestor, std::make_pair(w, v));
link_and_set_bridges(
v_prime, nearest_common_ancestor, std::make_pair(v, w));
}
}
}
if (!found_alternating_path)
return false;
// retrieve the augmenting path and put it in aug_path
reversed_retrieve_augmenting_path(v, v_free_ancestor);
retrieve_augmenting_path(w, w_free_ancestor);
// augment the matching along aug_path
vertex_descriptor_t a, b;
while (!aug_path.empty())
{
a = aug_path.front();
aug_path.pop_front();
b = aug_path.front();
aug_path.pop_front();
mate[a] = b;
mate[b] = a;
}
return true;
}
template < typename PropertyMap > void get_current_matching(PropertyMap pm)
{
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(pm, *vi, mate[*vi]);
}
template < typename PropertyMap > void get_vertex_state_map(PropertyMap pm)
{
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(pm, *vi, vertex_state[origin[ds.find_set(*vi)]]);
}
private:
vertex_descriptor_t parent(vertex_descriptor_t x)
{
if (vertex_state[x] == graph::detail::V_EVEN
&& mate[x] != graph_traits< Graph >::null_vertex())
return mate[x];
else if (vertex_state[x] == graph::detail::V_ODD)
return origin[ds.find_set(pred[x])];
else
return x;
}
void link_and_set_bridges(vertex_descriptor_t x,
vertex_descriptor_t stop_vertex, vertex_pair_t the_bridge)
{
for (vertex_descriptor_t v = x; v != stop_vertex; v = parent(v))
{
ds.union_set(v, stop_vertex);
origin[ds.find_set(stop_vertex)] = stop_vertex;
if (vertex_state[v] == graph::detail::V_ODD)
{
bridge[v] = the_bridge;
out_edge_iterator_t oei, oei_end;
for (boost::tie(oei, oei_end) = out_edges(v, g); oei != oei_end;
++oei)
{
if (target(*oei, g) != v)
{
even_edges.push_back(*oei);
}
}
}
}
}
// Since none of the STL containers support both constant-time
// concatenation and reversal, the process of expanding an
// augmenting path once we know one exists is a little more
// complicated than it has to be. If we know the path is from v to
// w, then the augmenting path is recursively defined as:
//
// path(v,w) = [v], if v = w
// = concat([v, mate[v]], path(pred[mate[v]], w),
// if v != w and vertex_state[v] == graph::detail::V_EVEN
// = concat([v], reverse(path(x,mate[v])), path(y,w)),
// if v != w, vertex_state[v] == graph::detail::V_ODD, and
// bridge[v] = (x,y)
//
// These next two mutually recursive functions implement this definition.
void retrieve_augmenting_path(vertex_descriptor_t v, vertex_descriptor_t w)
{
if (v == w)
aug_path.push_back(v);
else if (vertex_state[v] == graph::detail::V_EVEN)
{
aug_path.push_back(v);
aug_path.push_back(mate[v]);
retrieve_augmenting_path(pred[mate[v]], w);
}
else // vertex_state[v] == graph::detail::V_ODD
{
aug_path.push_back(v);
reversed_retrieve_augmenting_path(bridge[v].first, mate[v]);
retrieve_augmenting_path(bridge[v].second, w);
}
}
void reversed_retrieve_augmenting_path(
vertex_descriptor_t v, vertex_descriptor_t w)
{
if (v == w)
aug_path.push_back(v);
else if (vertex_state[v] == graph::detail::V_EVEN)
{
reversed_retrieve_augmenting_path(pred[mate[v]], w);
aug_path.push_back(mate[v]);
aug_path.push_back(v);
}
else // vertex_state[v] == graph::detail::V_ODD
{
reversed_retrieve_augmenting_path(bridge[v].second, w);
retrieve_augmenting_path(bridge[v].first, mate[v]);
aug_path.push_back(v);
}
}
// private data members
const Graph& g;
VertexIndexMap vm;
v_size_t n_vertices;
// storage for the property maps below
std::vector< vertex_descriptor_t > mate_vector;
std::vector< e_size_t > ancestor_of_v_vector;
std::vector< e_size_t > ancestor_of_w_vector;
std::vector< int > vertex_state_vector;
std::vector< vertex_descriptor_t > origin_vector;
std::vector< vertex_descriptor_t > pred_vector;
std::vector< vertex_pair_t > bridge_vector;
std::vector< vertex_descriptor_t > ds_parent_vector;
std::vector< v_size_t > ds_rank_vector;
// iterator property maps
vertex_to_vertex_map_t mate;
vertex_to_esize_map_t ancestor_of_v;
vertex_to_esize_map_t ancestor_of_w;
vertex_to_int_map_t vertex_state;
vertex_to_vertex_map_t origin;
vertex_to_vertex_map_t pred;
vertex_to_vertex_pair_map_t bridge;
vertex_to_vertex_map_t ds_parent_map;
vertex_to_vsize_map_t ds_rank_map;
vertex_list_t aug_path;
edge_list_t even_edges;
disjoint_sets< vertex_to_vsize_map_t, vertex_to_vertex_map_t > ds;
};
//***************************************************************************
//***************************************************************************
// Initial Matching Functors
//***************************************************************************
//***************************************************************************
template < typename Graph, typename MateMap > struct greedy_matching
{
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t;
typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
static void find_matching(const Graph& g, MateMap mate)
{
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(mate, *vi, graph_traits< Graph >::null_vertex());
edge_iterator_t ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
{
edge_descriptor_t e = *ei;
vertex_descriptor_t u = source(e, g);
vertex_descriptor_t v = target(e, g);
if (u != v && get(mate, u) == get(mate, v))
// only way equality can hold is if
// mate[u] == mate[v] == null_vertex
{
put(mate, u, v);
put(mate, v, u);
}
}
}
};
template < typename Graph, typename MateMap > struct extra_greedy_matching
{
// The "extra greedy matching" is formed by repeating the
// following procedure as many times as possible: Choose the
// unmatched vertex v of minimum non-zero degree. Choose the
// neighbor w of v which is unmatched and has minimum degree over
// all of v's neighbors. Add (u,v) to the matching. Ties for
// either choice are broken arbitrarily. This procedure takes time
// O(m log n), where m is the number of edges in the graph and n
// is the number of vertices.
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t;
typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
typedef std::pair< vertex_descriptor_t, vertex_descriptor_t > vertex_pair_t;
struct select_first
{
inline static vertex_descriptor_t select_vertex(const vertex_pair_t p)
{
return p.first;
}
};
struct select_second
{
inline static vertex_descriptor_t select_vertex(const vertex_pair_t p)
{
return p.second;
}
};
template < class PairSelector > class less_than_by_degree
{
public:
less_than_by_degree(const Graph& g) : m_g(g) {}
bool operator()(const vertex_pair_t x, const vertex_pair_t y)
{
return out_degree(PairSelector::select_vertex(x), m_g)
< out_degree(PairSelector::select_vertex(y), m_g);
}
private:
const Graph& m_g;
};
static void find_matching(const Graph& g, MateMap mate)
{
typedef std::vector<
std::pair< vertex_descriptor_t, vertex_descriptor_t > >
directed_edges_vector_t;
directed_edges_vector_t edge_list;
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(mate, *vi, graph_traits< Graph >::null_vertex());
edge_iterator_t ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
{
edge_descriptor_t e = *ei;
vertex_descriptor_t u = source(e, g);
vertex_descriptor_t v = target(e, g);
if (u == v)
continue;
edge_list.push_back(std::make_pair(u, v));
edge_list.push_back(std::make_pair(v, u));
}
// sort the edges by the degree of the target, then (using a
// stable sort) by degree of the source
std::sort(edge_list.begin(), edge_list.end(),
less_than_by_degree< select_second >(g));
std::stable_sort(edge_list.begin(), edge_list.end(),
less_than_by_degree< select_first >(g));
// construct the extra greedy matching
for (typename directed_edges_vector_t::const_iterator itr
= edge_list.begin();
itr != edge_list.end(); ++itr)
{
if (get(mate, itr->first) == get(mate, itr->second))
// only way equality can hold is if mate[itr->first] ==
// mate[itr->second] == null_vertex
{
put(mate, itr->first, itr->second);
put(mate, itr->second, itr->first);
}
}
}
};
template < typename Graph, typename MateMap > struct empty_matching
{
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
static void find_matching(const Graph& g, MateMap mate)
{
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(mate, *vi, graph_traits< Graph >::null_vertex());
}
};
//***************************************************************************
//***************************************************************************
// Matching Verifiers
//***************************************************************************
//***************************************************************************
namespace detail
{
template < typename SizeType >
class odd_components_counter : public dfs_visitor<>
// This depth-first search visitor will count the number of connected
// components with an odd number of vertices. It's used by
// maximum_matching_verifier.
{
public:
odd_components_counter(SizeType& c_count) : m_count(c_count)
{
m_count = 0;
}
template < class Vertex, class Graph > void start_vertex(Vertex, Graph&)
{
m_parity = false;
}
template < class Vertex, class Graph >
void discover_vertex(Vertex, Graph&)
{
m_parity = !m_parity;
m_parity ? ++m_count : --m_count;
}
protected:
SizeType& m_count;
private:
bool m_parity;
};
} // namespace detail
template < typename Graph, typename MateMap,
typename VertexIndexMap = dummy_property_map >
struct no_matching_verifier
{
inline static bool verify_matching(const Graph&, MateMap, VertexIndexMap)
{
return true;
}
};
template < typename Graph, typename MateMap, typename VertexIndexMap >
struct maximum_cardinality_matching_verifier
{
template < typename X > struct map_vertex_to_
{
typedef boost::iterator_property_map<
typename std::vector< X >::iterator, VertexIndexMap >
type;
};
typedef
typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
typedef typename map_vertex_to_< int >::type vertex_to_int_map_t;
typedef typename map_vertex_to_< vertex_descriptor_t >::type
vertex_to_vertex_map_t;
template < typename VertexStateMap > struct non_odd_vertex
{
// this predicate is used to create a filtered graph that
// excludes vertices labeled "graph::detail::V_ODD"
non_odd_vertex() : vertex_state(0) {}
non_odd_vertex(VertexStateMap* arg_vertex_state)
: vertex_state(arg_vertex_state)
{
}
template < typename Vertex > bool operator()(const Vertex& v) const
{
BOOST_ASSERT(vertex_state);
return get(*vertex_state, v) != graph::detail::V_ODD;
}
VertexStateMap* vertex_state;
};
static bool verify_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
{
// For any graph G, let o(G) be the number of connected
// components in G of odd size. For a subset S of G's vertex set
// V(G), let (G - S) represent the subgraph of G induced by
// removing all vertices in S from G. Let M(G) be the size of the
// maximum cardinality matching in G. Then the Tutte-Berge
// formula guarantees that
//
// 2 * M(G) = min ( |V(G)| + |U| + o(G - U) )
//
// where the minimum is taken over all subsets U of
// V(G). Edmonds' algorithm finds a set U that achieves the
// minimum in the above formula, namely the vertices labeled
//"ODD." This function runs one iteration of Edmonds' algorithm
// to find U, then verifies that the size of the matching given
// by mate satisfies the Tutte-Berge formula.
// first, make sure it's a valid matching
if (!is_a_matching(g, mate, vm))
return false;
// We'll try to augment the matching once. This serves two
// purposes: first, if we find some augmenting path, the matching
// is obviously non-maximum. Second, running edmonds' algorithm
// on a graph with no augmenting path will create the
// Edmonds-Gallai decomposition that we need as a certificate of
// maximality - we can get it by looking at the vertex_state map
// that results.
edmonds_augmenting_path_finder< Graph, MateMap, VertexIndexMap >
augmentor(g, mate, vm);
if (augmentor.augment_matching())
return false;
std::vector< int > vertex_state_vector(num_vertices(g));
vertex_to_int_map_t vertex_state(vertex_state_vector.begin(), vm);
augmentor.get_vertex_state_map(vertex_state);
// count the number of graph::detail::V_ODD vertices
v_size_t num_odd_vertices = 0;
vertex_iterator_t vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
if (vertex_state[*vi] == graph::detail::V_ODD)
++num_odd_vertices;
// count the number of connected components with odd cardinality
// in the graph without graph::detail::V_ODD vertices
non_odd_vertex< vertex_to_int_map_t > filter(&vertex_state);
filtered_graph< Graph, keep_all, non_odd_vertex< vertex_to_int_map_t > >
fg(g, keep_all(), filter);
v_size_t num_odd_components;
detail::odd_components_counter< v_size_t > occ(num_odd_components);
depth_first_search(fg, visitor(occ).vertex_index_map(vm));
if (2 * matching_size(g, mate, vm)
== num_vertices(g) + num_odd_vertices - num_odd_components)
return true;
else
return false;
}
};
template < typename Graph, typename MateMap, typename VertexIndexMap,
template < typename, typename, typename > class AugmentingPathFinder,
template < typename, typename > class InitialMatchingFinder,
template < typename, typename, typename > class MatchingVerifier >
bool matching(const Graph& g, MateMap mate, VertexIndexMap vm)
{
InitialMatchingFinder< Graph, MateMap >::find_matching(g, mate);
AugmentingPathFinder< Graph, MateMap, VertexIndexMap > augmentor(
g, mate, vm);
bool not_maximum_yet = true;
while (not_maximum_yet)
{
not_maximum_yet = augmentor.augment_matching();
}
augmentor.get_current_matching(mate);
return MatchingVerifier< Graph, MateMap, VertexIndexMap >::verify_matching(
g, mate, vm);
}
template < typename Graph, typename MateMap, typename VertexIndexMap >
inline bool checked_edmonds_maximum_cardinality_matching(
const Graph& g, MateMap mate, VertexIndexMap vm)
{
return matching< Graph, MateMap, VertexIndexMap,
edmonds_augmenting_path_finder, extra_greedy_matching,
maximum_cardinality_matching_verifier >(g, mate, vm);
}
template < typename Graph, typename MateMap >
inline bool checked_edmonds_maximum_cardinality_matching(
const Graph& g, MateMap mate)
{
return checked_edmonds_maximum_cardinality_matching(
g, mate, get(vertex_index, g));
}
template < typename Graph, typename MateMap, typename VertexIndexMap >
inline void edmonds_maximum_cardinality_matching(
const Graph& g, MateMap mate, VertexIndexMap vm)
{
matching< Graph, MateMap, VertexIndexMap, edmonds_augmenting_path_finder,
extra_greedy_matching, no_matching_verifier >(g, mate, vm);
}
template < typename Graph, typename MateMap >
inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate)
{
edmonds_maximum_cardinality_matching(g, mate, get(vertex_index, g));
}
} // namespace boost
#endif // BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP