boost/histogram/unlimited_storage.hpp
// Copyright 2015-2019 Hans Dembinski
// Copyright 2019 Glen Joseph Fernandes (glenjofe@gmail.com)
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_UNLIMTED_STORAGE_HPP
#define BOOST_HISTOGRAM_UNLIMTED_STORAGE_HPP
#include <algorithm>
#include <boost/core/alloc_construct.hpp>
#include <boost/core/exchange.hpp>
#include <boost/core/nvp.hpp>
#include <boost/histogram/detail/array_wrapper.hpp>
#include <boost/histogram/detail/iterator_adaptor.hpp>
#include <boost/histogram/detail/large_int.hpp>
#include <boost/histogram/detail/operators.hpp>
#include <boost/histogram/detail/safe_comparison.hpp>
#include <boost/histogram/fwd.hpp>
#include <boost/mp11/algorithm.hpp>
#include <boost/mp11/list.hpp>
#include <boost/mp11/utility.hpp>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
namespace boost {
namespace histogram {
namespace detail {
template <class T>
struct is_large_int : std::false_type {};
template <class A>
struct is_large_int<large_int<A>> : std::true_type {};
template <class T, class ReturnType>
using if_arithmetic_or_large_int =
std::enable_if_t<(std::is_arithmetic<T>::value || is_large_int<T>::value),
ReturnType>;
template <class L, class T>
using next_type = mp11::mp_at_c<L, (mp11::mp_find<L, T>::value + 1)>;
template <class Allocator>
class construct_guard {
public:
using pointer = typename std::allocator_traits<Allocator>::pointer;
construct_guard(Allocator& a, pointer p, std::size_t n) noexcept
: a_(a), p_(p), n_(n) {}
~construct_guard() {
if (p_) { a_.deallocate(p_, n_); }
}
void release() { p_ = pointer(); }
construct_guard(const construct_guard&) = delete;
construct_guard& operator=(const construct_guard&) = delete;
private:
Allocator& a_;
pointer p_;
std::size_t n_;
};
template <class Allocator>
void* buffer_create(Allocator& a, std::size_t n) {
auto ptr = a.allocate(n); // may throw
static_assert(std::is_trivially_copyable<decltype(ptr)>::value,
"ptr must be trivially copyable");
construct_guard<Allocator> guard(a, ptr, n);
boost::alloc_construct_n(a, ptr, n);
guard.release();
return static_cast<void*>(ptr);
}
template <class Allocator, class Iterator>
auto buffer_create(Allocator& a, std::size_t n, Iterator iter) {
assert(n > 0u);
auto ptr = a.allocate(n); // may throw
static_assert(std::is_trivially_copyable<decltype(ptr)>::value,
"ptr must be trivially copyable");
construct_guard<Allocator> guard(a, ptr, n);
using T = typename std::allocator_traits<Allocator>::value_type;
struct casting_iterator {
void operator++() noexcept { ++iter_; }
T operator*() noexcept {
return static_cast<T>(*iter_);
} // silence conversion warnings
Iterator iter_;
};
boost::alloc_construct_n(a, ptr, n, casting_iterator{iter});
guard.release();
return ptr;
}
template <class Allocator>
void buffer_destroy(Allocator& a, typename std::allocator_traits<Allocator>::pointer p,
std::size_t n) {
assert(p);
assert(n > 0u);
boost::alloc_destroy_n(a, p, n);
a.deallocate(p, n);
}
} // namespace detail
/**
Memory-efficient storage for integral counters which cannot overflow.
This storage provides a no-overflow-guarantee if the counters are incremented with
integer weights. It maintains a contiguous array of elemental counters, one for each
cell. If an operation is requested which would overflow a counter, the array is
replaced with another of a wider integral type, then the operation is executed. The
storage uses integers of 8, 16, 32, 64 bits, and then switches to a multiprecision
integral type, similar to those in
[Boost.Multiprecision](https://www.boost.org/doc/libs/develop/libs/multiprecision/doc/html/index.html).
A scaling operation or adding a floating point number triggers a conversion of the
elemental counters into doubles, which voids the no-overflow-guarantee.
*/
template <class Allocator>
class unlimited_storage {
static_assert(
std::is_same<typename std::allocator_traits<Allocator>::pointer,
typename std::allocator_traits<Allocator>::value_type*>::value,
"unlimited_storage requires allocator with trivial pointer type");
using U8 = std::uint8_t;
using U16 = std::uint16_t;
using U32 = std::uint32_t;
using U64 = std::uint64_t;
public:
static constexpr bool has_threading_support = false;
using allocator_type = Allocator;
using value_type = double;
using large_int = detail::large_int<
typename std::allocator_traits<allocator_type>::template rebind_alloc<U64>>;
struct buffer_type {
// cannot be moved outside of scope of unlimited_storage, large_int is dependent type
using types = mp11::mp_list<U8, U16, U32, U64, large_int, double>;
template <class T>
static constexpr unsigned type_index() noexcept {
return static_cast<unsigned>(mp11::mp_find<types, T>::value);
}
template <class F, class... Ts>
decltype(auto) visit(F&& f, Ts&&... ts) const {
// this is intentionally not a switch, the if-chain is faster in benchmarks
if (type == type_index<U8>())
return f(static_cast<U8*>(ptr), std::forward<Ts>(ts)...);
if (type == type_index<U16>())
return f(static_cast<U16*>(ptr), std::forward<Ts>(ts)...);
if (type == type_index<U32>())
return f(static_cast<U32*>(ptr), std::forward<Ts>(ts)...);
if (type == type_index<U64>())
return f(static_cast<U64*>(ptr), std::forward<Ts>(ts)...);
if (type == type_index<large_int>())
return f(static_cast<large_int*>(ptr), std::forward<Ts>(ts)...);
return f(static_cast<double*>(ptr), std::forward<Ts>(ts)...);
}
buffer_type(const allocator_type& a = {}) : alloc(a) {}
buffer_type(buffer_type&& o) noexcept
: alloc(std::move(o.alloc))
, size(boost::exchange(o.size, 0))
, type(boost::exchange(o.type, 0))
, ptr(boost::exchange(o.ptr, nullptr)) {}
buffer_type& operator=(buffer_type&& o) noexcept {
using std::swap;
swap(alloc, o.alloc);
swap(size, o.size);
swap(type, o.type);
swap(ptr, o.ptr);
return *this;
}
buffer_type(const buffer_type& x) : alloc(x.alloc) {
x.visit([this, n = x.size](const auto* xp) {
using T = std::decay_t<decltype(*xp)>;
this->template make<T>(n, xp);
});
}
buffer_type& operator=(const buffer_type& o) {
*this = buffer_type(o);
return *this;
}
~buffer_type() noexcept { destroy(); }
void destroy() noexcept {
assert((ptr == nullptr) == (size == 0));
if (ptr == nullptr) return;
visit([this](auto* p) {
using T = std::decay_t<decltype(*p)>;
using alloc_type =
typename std::allocator_traits<allocator_type>::template rebind_alloc<T>;
alloc_type a(alloc); // rebind allocator
detail::buffer_destroy(a, p, this->size);
});
size = 0;
type = 0;
ptr = nullptr;
}
template <class T>
void make(std::size_t n) {
// note: order of commands is to not leave buffer in invalid state upon throw
destroy();
if (n > 0) {
// rebind allocator
using alloc_type =
typename std::allocator_traits<allocator_type>::template rebind_alloc<T>;
alloc_type a(alloc);
ptr = detail::buffer_create(a, n); // may throw
}
size = n;
type = type_index<T>();
}
template <class T, class U>
void make(std::size_t n, U iter) {
// note: iter may be current ptr, so create new buffer before deleting old buffer
void* new_ptr = nullptr;
const auto new_type = type_index<T>();
if (n > 0) {
// rebind allocator
using alloc_type =
typename std::allocator_traits<allocator_type>::template rebind_alloc<T>;
alloc_type a(alloc);
new_ptr = detail::buffer_create(a, n, iter); // may throw
}
destroy();
size = n;
type = new_type;
ptr = new_ptr;
}
allocator_type alloc;
std::size_t size = 0;
unsigned type = 0;
mutable void* ptr = nullptr;
};
class reference; // forward declare to make friend of const_reference
/// implementation detail
class const_reference
: detail::partially_ordered<const_reference, const_reference, void> {
public:
const_reference(buffer_type& b, std::size_t i) noexcept : bref_(b), idx_(i) {
assert(idx_ < bref_.size);
}
const_reference(const const_reference&) noexcept = default;
// no assignment for const_references
const_reference& operator=(const const_reference&) = delete;
const_reference& operator=(const_reference&&) = delete;
operator double() const noexcept {
return bref_.visit(
[this](const auto* p) { return static_cast<double>(p[this->idx_]); });
}
bool operator<(const const_reference& o) const noexcept {
return apply_binary<detail::safe_less>(o);
}
bool operator==(const const_reference& o) const noexcept {
return apply_binary<detail::safe_equal>(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator<(const U& o) const noexcept {
return apply_binary<detail::safe_less>(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator>(const U& o) const noexcept {
return apply_binary<detail::safe_greater>(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator==(const U& o) const noexcept {
return apply_binary<detail::safe_equal>(o);
}
private:
template <class Binary>
bool apply_binary(const const_reference& x) const noexcept {
return x.bref_.visit([this, ix = x.idx_](const auto* xp) {
return this->apply_binary<Binary>(xp[ix]);
});
}
template <class Binary, class U>
bool apply_binary(const U& x) const noexcept {
return bref_.visit([i = idx_, &x](const auto* p) { return Binary()(p[i], x); });
}
protected:
buffer_type& bref_;
std::size_t idx_;
friend class reference;
};
/// implementation detail
class reference : public const_reference,
public detail::partially_ordered<reference, reference, void> {
public:
reference(buffer_type& b, std::size_t i) noexcept : const_reference(b, i) {}
// references do copy-construct
reference(const reference& x) noexcept = default;
// references do not rebind, assign through
reference& operator=(const reference& x) {
return operator=(static_cast<const_reference>(x));
}
// references do not rebind, assign through
reference& operator=(const const_reference& x) {
// safe for self-assignment, assigning matching type doesn't invalide buffer
x.bref_.visit([this, ix = x.idx_](const auto* xp) { this->operator=(xp[ix]); });
return *this;
}
template <class U>
detail::if_arithmetic_or_large_int<U, reference&> operator=(const U& x) {
this->bref_.visit([this, &x](auto* p) {
// gcc-8 optimizes the expression `p[this->idx_] = 0` away even at -O0,
// so we merge it into the next line which is properly counted
adder()((p[this->idx_] = 0, p), this->bref_, this->idx_, x);
});
return *this;
}
bool operator<(const reference& o) const noexcept {
return const_reference::operator<(o);
}
bool operator==(const reference& o) const noexcept {
return const_reference::operator==(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator<(const U& o) const noexcept {
return const_reference::operator<(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator>(const U& o) const noexcept {
return const_reference::operator>(o);
}
template <class U>
detail::if_arithmetic_or_large_int<U, bool> operator==(const U& o) const noexcept {
return const_reference::operator==(o);
}
reference& operator+=(const const_reference& x) {
x.bref_.visit([this, ix = x.idx_](const auto* xp) { this->operator+=(xp[ix]); });
return *this;
}
template <class U>
detail::if_arithmetic_or_large_int<U, reference&> operator+=(const U& x) {
this->bref_.visit(adder(), this->bref_, this->idx_, x);
return *this;
}
reference& operator-=(const double x) { return operator+=(-x); }
reference& operator*=(const double x) {
this->bref_.visit(multiplier(), this->bref_, this->idx_, x);
return *this;
}
reference& operator/=(const double x) { return operator*=(1.0 / x); }
reference& operator++() {
this->bref_.visit(incrementor(), this->bref_, this->idx_);
return *this;
}
};
private:
template <class Value, class Reference>
class iterator_impl : public detail::iterator_adaptor<iterator_impl<Value, Reference>,
std::size_t, Reference, Value> {
public:
iterator_impl() = default;
template <class V, class R>
iterator_impl(const iterator_impl<V, R>& it)
: iterator_impl::iterator_adaptor_(it.base()), buffer_(it.buffer_) {}
iterator_impl(buffer_type* b, std::size_t i) noexcept
: iterator_impl::iterator_adaptor_(i), buffer_(b) {}
Reference operator*() const noexcept { return {*buffer_, this->base()}; }
template <class V, class R>
friend class iterator_impl;
private:
mutable buffer_type* buffer_ = nullptr;
};
public:
using const_iterator = iterator_impl<const value_type, const_reference>;
using iterator = iterator_impl<value_type, reference>;
explicit unlimited_storage(const allocator_type& a = {}) : buffer_(a) {}
unlimited_storage(const unlimited_storage&) = default;
unlimited_storage& operator=(const unlimited_storage&) = default;
unlimited_storage(unlimited_storage&&) = default;
unlimited_storage& operator=(unlimited_storage&&) = default;
// TODO
// template <class Allocator>
// unlimited_storage(const unlimited_storage<Allocator>& s)
template <class Iterable, class = detail::requires_iterable<Iterable>>
explicit unlimited_storage(const Iterable& s) {
using std::begin;
using std::end;
auto s_begin = begin(s);
auto s_end = end(s);
using V = typename std::iterator_traits<decltype(begin(s))>::value_type;
// must be non-const to avoid msvc warning about if constexpr
auto ti = buffer_type::template type_index<V>();
auto nt = mp11::mp_size<typename buffer_type::types>::value;
const std::size_t size = static_cast<std::size_t>(std::distance(s_begin, s_end));
if (ti < nt)
buffer_.template make<V>(size, s_begin);
else
buffer_.template make<double>(size, s_begin);
}
template <class Iterable, class = detail::requires_iterable<Iterable>>
unlimited_storage& operator=(const Iterable& s) {
*this = unlimited_storage(s);
return *this;
}
allocator_type get_allocator() const { return buffer_.alloc; }
void reset(std::size_t n) { buffer_.template make<U8>(n); }
std::size_t size() const noexcept { return buffer_.size; }
reference operator[](std::size_t i) noexcept { return {buffer_, i}; }
const_reference operator[](std::size_t i) const noexcept { return {buffer_, i}; }
bool operator==(const unlimited_storage& x) const noexcept {
if (size() != x.size()) return false;
return buffer_.visit([&x](const auto* p) {
return x.buffer_.visit([p, n = x.size()](const auto* xp) {
return std::equal(p, p + n, xp, detail::safe_equal{});
});
});
}
template <class Iterable>
bool operator==(const Iterable& iterable) const {
if (size() != iterable.size()) return false;
return buffer_.visit([&iterable](const auto* p) {
return std::equal(p, p + iterable.size(), std::begin(iterable),
detail::safe_equal{});
});
}
unlimited_storage& operator*=(const double x) {
buffer_.visit(multiplier(), buffer_, x);
return *this;
}
iterator begin() noexcept { return {&buffer_, 0}; }
iterator end() noexcept { return {&buffer_, size()}; }
const_iterator begin() const noexcept { return {&buffer_, 0}; }
const_iterator end() const noexcept { return {&buffer_, size()}; }
/// implementation detail; used by unit tests, not part of generic storage interface
template <class T>
unlimited_storage(std::size_t s, const T* p, const allocator_type& a = {})
: buffer_(std::move(a)) {
buffer_.template make<T>(s, p);
}
template <class Archive>
void serialize(Archive& ar, unsigned /* version */) {
if (Archive::is_loading::value) {
buffer_type tmp(buffer_.alloc);
std::size_t size;
ar& make_nvp("type", tmp.type);
ar& make_nvp("size", size);
tmp.visit([this, size](auto* tp) {
assert(tp == nullptr);
using T = std::decay_t<decltype(*tp)>;
buffer_.template make<T>(size);
});
} else {
ar& make_nvp("type", buffer_.type);
ar& make_nvp("size", buffer_.size);
}
buffer_.visit([this, &ar](auto* tp) {
auto w = detail::make_array_wrapper(tp, this->buffer_.size);
ar& make_nvp("buffer", w);
});
}
private:
struct incrementor {
template <class T>
void operator()(T* tp, buffer_type& b, std::size_t i) {
assert(tp && i < b.size);
if (!detail::safe_increment(tp[i])) {
using U = detail::next_type<typename buffer_type::types, T>;
b.template make<U>(b.size, tp);
++static_cast<U*>(b.ptr)[i];
}
}
void operator()(large_int* tp, buffer_type&, std::size_t i) { ++tp[i]; }
void operator()(double* tp, buffer_type&, std::size_t i) { ++tp[i]; }
};
struct adder {
template <class U>
void operator()(double* tp, buffer_type&, std::size_t i, const U& x) {
tp[i] += static_cast<double>(x);
}
void operator()(large_int* tp, buffer_type&, std::size_t i, const large_int& x) {
tp[i] += x; // potentially adding large_int to itself is safe
}
template <class T, class U>
void operator()(T* tp, buffer_type& b, std::size_t i, const U& x) {
is_x_integral(std::is_integral<U>{}, tp, b, i, x);
}
template <class T, class U>
void is_x_integral(std::false_type, T* tp, buffer_type& b, std::size_t i,
const U& x) {
// x could be reference to buffer we manipulate, make copy before changing buffer
const auto v = static_cast<double>(x);
b.template make<double>(b.size, tp);
operator()(static_cast<double*>(b.ptr), b, i, v);
}
template <class T>
void is_x_integral(std::false_type, T* tp, buffer_type& b, std::size_t i,
const large_int& x) {
// x could be reference to buffer we manipulate, make copy before changing buffer
const auto v = static_cast<large_int>(x);
b.template make<large_int>(b.size, tp);
operator()(static_cast<large_int*>(b.ptr), b, i, v);
}
template <class T, class U>
void is_x_integral(std::true_type, T* tp, buffer_type& b, std::size_t i, const U& x) {
is_x_unsigned(std::is_unsigned<U>{}, tp, b, i, x);
}
template <class T, class U>
void is_x_unsigned(std::false_type, T* tp, buffer_type& b, std::size_t i,
const U& x) {
if (x >= 0)
is_x_unsigned(std::true_type{}, tp, b, i, detail::make_unsigned(x));
else
is_x_integral(std::false_type{}, tp, b, i, static_cast<double>(x));
}
template <class T, class U>
void is_x_unsigned(std::true_type, T* tp, buffer_type& b, std::size_t i, const U& x) {
if (detail::safe_radd(tp[i], x)) return;
// x could be reference to buffer we manipulate, need to convert to value
const auto y = x;
using TN = detail::next_type<typename buffer_type::types, T>;
b.template make<TN>(b.size, tp);
is_x_unsigned(std::true_type{}, static_cast<TN*>(b.ptr), b, i, y);
}
template <class U>
void is_x_unsigned(std::true_type, large_int* tp, buffer_type&, std::size_t i,
const U& x) {
tp[i] += x;
}
};
struct multiplier {
template <class T>
void operator()(T* tp, buffer_type& b, const double x) {
// potential lossy conversion that cannot be avoided
b.template make<double>(b.size, tp);
operator()(static_cast<double*>(b.ptr), b, x);
}
void operator()(double* tp, buffer_type& b, const double x) {
for (auto end = tp + b.size; tp != end; ++tp) *tp *= x;
}
template <class T>
void operator()(T* tp, buffer_type& b, std::size_t i, const double x) {
b.template make<double>(b.size, tp);
operator()(static_cast<double*>(b.ptr), b, i, x);
}
void operator()(double* tp, buffer_type&, std::size_t i, const double x) {
tp[i] *= static_cast<double>(x);
}
};
mutable buffer_type buffer_;
friend struct unsafe_access;
};
} // namespace histogram
} // namespace boost
#endif