Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

boost/lockfree/queue.hpp

//  lock-free queue from
//  Michael, M. M. and Scott, M. L.,
//  "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
//
//  Copyright (C) 2008-2013 Tim Blechmann
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#define BOOST_LOCKFREE_FIFO_HPP_INCLUDED

#include <boost/assert.hpp>
#include <boost/config.hpp> // for BOOST_LIKELY & BOOST_ALIGNMENT
#include <boost/core/allocator_access.hpp>
#include <boost/parameter/optional.hpp>
#include <boost/parameter/parameters.hpp>
#include <boost/static_assert.hpp>

#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/freelist.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/tagged_ptr.hpp>
#include <boost/lockfree/detail/uses_optional.hpp>
#include <boost/lockfree/lockfree_forward.hpp>

#ifdef BOOST_HAS_PRAGMA_ONCE
#    pragma once
#endif


#if defined( _MSC_VER )
#    pragma warning( push )
#    pragma warning( disable : 4324 ) // structure was padded due to __declspec(align())
#endif

#if defined( BOOST_INTEL ) && ( BOOST_INTEL_CXX_VERSION > 1000 )
#    pragma warning( push )
#    pragma warning( disable : 488 ) // template parameter unused in declaring parameter types,
                                     // gets erronously triggered the queue constructor which
                                     // takes an allocator of another type and rebinds it
#endif


namespace boost { namespace lockfree {

#ifndef BOOST_DOXYGEN_INVOKED
namespace detail {

typedef parameter::parameters< boost::parameter::optional< tag::allocator >, boost::parameter::optional< tag::capacity > >
    queue_signature;

} /* namespace detail */
#endif


/** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
 *  construction/destruction has to be synchronized. It uses a freelist for memory management,
 *  freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
 *
 *  \b Policies:
 *  - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
 *    Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
 *    If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are
 * addressed by array indexing. This limits the possible size of the queue to the number of elements that can be
 * addressed by the index type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange
 * instructions, this is the best way to achieve lock-freedom.
 *
 *  - \ref boost::lockfree::capacity, optional \n
 *    If this template argument is passed to the options, the size of the queue is set at compile-time.\n
 *    This option implies \c fixed_sized<true>
 *
 *  - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
 *    Specifies the allocator that is used for the internal freelist
 *
 *  \b Requirements:
 *   - T must have a copy constructor
 *   - T must have a trivial assignment operator
 *   - T must have a trivial destructor
 *
 * */
template < typename T, typename... Options >
#if !defined( BOOST_NO_CXX20_HDR_CONCEPTS )
    requires( std::is_copy_assignable_v< T >,
              std::is_trivially_assignable_v< T&, T >,
              std::is_trivially_destructible_v< T > )
#endif
class queue
{
private:
#ifndef BOOST_DOXYGEN_INVOKED

    BOOST_STATIC_ASSERT( ( std::is_trivially_destructible< T >::value ) );
    BOOST_STATIC_ASSERT( ( std::is_trivially_assignable< T&, T >::value ) );

    typedef typename detail::queue_signature::bind< Options... >::type bound_args;

    static constexpr bool   has_capacity = detail::extract_capacity< bound_args >::has_capacity;
    static constexpr size_t capacity
        = detail::extract_capacity< bound_args >::capacity + 1; // the queue uses one dummy node
    static constexpr bool fixed_sized        = detail::extract_fixed_sized< bound_args >::value;
    static constexpr bool node_based         = !( has_capacity || fixed_sized );
    static constexpr bool compile_time_sized = has_capacity;

    struct BOOST_ALIGNMENT( BOOST_LOCKFREE_CACHELINE_BYTES ) node
    {
        typedef typename detail::select_tagged_handle< node, node_based >::tagged_handle_type tagged_node_handle;
        typedef typename detail::select_tagged_handle< node, node_based >::handle_type        handle_type;

        node( T const& v, handle_type null_handle ) :
            data( v )
        {
            /* increment tag to avoid ABA problem */
            tagged_node_handle old_next = next.load( memory_order_relaxed );
            tagged_node_handle new_next( null_handle, old_next.get_next_tag() );
            next.store( new_next, memory_order_release );
        }

        node( handle_type null_handle ) :
            next( tagged_node_handle( null_handle, 0 ) )
        {}

        node( void )
        {}

        atomic< tagged_node_handle > next;
        T                            data;
    };

    typedef detail::extract_allocator_t< bound_args, node >                                              node_allocator;
    typedef detail::select_freelist_t< node, node_allocator, compile_time_sized, fixed_sized, capacity > pool_t;
    typedef typename pool_t::tagged_node_handle                                    tagged_node_handle;
    typedef typename detail::select_tagged_handle< node, node_based >::handle_type handle_type;

    void initialize( void )
    {
        node*              n = pool.template construct< true, false >( pool.null_handle() );
        tagged_node_handle dummy_node( pool.get_handle( n ), 0 );
        head_.store( dummy_node, memory_order_relaxed );
        tail_.store( dummy_node, memory_order_release );
    }

    struct implementation_defined
    {
        typedef node_allocator allocator;
        typedef std::size_t    size_type;
    };

#endif

public:
    typedef T                                          value_type;
    typedef typename implementation_defined::allocator allocator;
    typedef typename implementation_defined::size_type size_type;

    /**
     * \return true, if implementation is lock-free.
     *
     * \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
     *       On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there
     * is no possibility to provide a completely accurate implementation, because one would need to test every internal
     *       node, which is impossible if further nodes will be allocated from the operating system.
     * */
    bool is_lock_free( void ) const
    {
        return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
    }

    /** Construct a fixed-sized queue
     *
     *  \pre Must specify a capacity<> argument
     * */
    queue( void )
#if !defined( BOOST_NO_CXX20_HDR_CONCEPTS )
        requires( has_capacity )
#endif
        :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( node_allocator(), capacity )
    {
        // Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
        // this function and this function may be compiled even when it isn't being used.
        BOOST_ASSERT( has_capacity );
        initialize();
    }

    /** Construct a fixed-sized queue with a custom allocator
     *
     *  \pre Must specify a capacity<> argument
     * */
    template < typename U, typename Enabler = std::enable_if< has_capacity > >
    explicit queue( typename boost::allocator_rebind< node_allocator, U >::type const& alloc ) :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( alloc, capacity )
    {
        initialize();
    }

    /** Construct a fixed-sized queue with a custom allocator
     *
     *  \pre Must specify a capacity<> argument
     * */
    template < typename Enabler = std::enable_if< has_capacity > >
    explicit queue( allocator const& alloc ) :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( alloc, capacity )
    {
        initialize();
    }

    /** Construct a variable-sized queue
     *
     *  Allocate n nodes initially for the freelist
     *
     *  \pre Must \b not specify a capacity<> argument
     * */
    template < typename Enabler = std::enable_if< !has_capacity > >
    explicit queue( size_type n ) :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( node_allocator(), n + 1 )
    {
        initialize();
    }

    /** Construct a variable-sized queue with a custom allocator
     *
     *  Allocate n nodes initially for the freelist
     *
     *  \pre Must \b not specify a capacity<> argument
     * */
    template < typename U, typename Enabler = std::enable_if< !has_capacity > >
    queue( size_type n, typename boost::allocator_rebind< node_allocator, U >::type const& alloc ) :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( alloc, n + 1 )
    {
        initialize();
    }

    /** Construct a variable-sized queue with a custom allocator
     *
     *  Allocate n nodes initially for the freelist
     *
     *  \pre Must \b not specify a capacity<> argument
     * */
    template < typename Enabler = std::enable_if< !has_capacity > >
    queue( size_type n, allocator const& alloc ) :
        head_( tagged_node_handle( 0, 0 ) ),
        tail_( tagged_node_handle( 0, 0 ) ),
        pool( alloc, n + 1 )
    {
        initialize();
    }

    queue( const queue& )            = delete;
    queue& operator=( const queue& ) = delete;
    queue( queue&& )                 = delete;
    queue& operator=( queue&& )      = delete;

    /** \copydoc boost::lockfree::stack::reserve
     * */
    void reserve( size_type n )
    {
        pool.template reserve< true >( n );
    }

    /** \copydoc boost::lockfree::stack::reserve_unsafe
     * */
    void reserve_unsafe( size_type n )
    {
        pool.template reserve< false >( n );
    }

    /** Destroys queue, free all nodes from freelist.
     * */
    ~queue( void )
    {
        consume_all( []( const T& ) {} );

        pool.template destruct< false >( head_.load( memory_order_relaxed ) );
    }

    /** Check if the queue is empty
     *
     * \return true, if the queue is empty, false otherwise
     * \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use
     * this value in program logic.
     * */
    bool empty( void ) const
    {
        return pool.get_handle( head_.load() ) == pool.get_handle( tail_.load() );
    }

    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will
     * be allocated from the OS. This may not be lock-free.
     * */
    bool push( const T& t )
    {
        return do_push< false >( t );
    }

    /// \copydoc boost::lockfree::queue::push(const T & t)
    bool push( T&& t )
    {
        return do_push< false >( std::forward< T >( t ) );
    }

    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
     * \throws if memory allocator throws
     * */
    bool bounded_push( const T& t )
    {
        return do_push< true >( t );
    }

    /// \copydoc boost::lockfree::queue::bounded_push(const T & t)
    bool bounded_push( T&& t )
    {
        return do_push< true >( std::forward< T >( t ) );
    }


private:
#ifndef BOOST_DOXYGEN_INVOKED
    template < bool Bounded >
    bool do_push( T&& t )
    {
        node* n = pool.template construct< true, Bounded >( std::forward< T >( t ), pool.null_handle() );
        return do_push_node( n );
    }

    template < bool Bounded >
    bool do_push( T const& t )
    {
        node* n = pool.template construct< true, Bounded >( t, pool.null_handle() );
        return do_push_node( n );
    }

    bool do_push_node( node* n )
    {
        handle_type node_handle = pool.get_handle( n );

        if ( n == NULL )
            return false;

        for ( ;; ) {
            tagged_node_handle tail      = tail_.load( memory_order_acquire );
            node*              tail_node = pool.get_pointer( tail );
            tagged_node_handle next      = tail_node->next.load( memory_order_acquire );
            node*              next_ptr  = pool.get_pointer( next );

            tagged_node_handle tail2 = tail_.load( memory_order_acquire );
            if ( BOOST_LIKELY( tail == tail2 ) ) {
                if ( next_ptr == 0 ) {
                    tagged_node_handle new_tail_next( node_handle, next.get_next_tag() );
                    if ( tail_node->next.compare_exchange_weak( next, new_tail_next ) ) {
                        tagged_node_handle new_tail( node_handle, tail.get_next_tag() );
                        tail_.compare_exchange_strong( tail, new_tail );
                        return true;
                    }
                } else {
                    tagged_node_handle new_tail( pool.get_handle( next_ptr ), tail.get_next_tag() );
                    tail_.compare_exchange_strong( tail, new_tail );
                }
            }
        }
    }

#endif

public:
    /** Pushes object t to the queue.
     *
     * \post object will be pushed to the queue, if internal node can be allocated
     * \returns true, if the push operation is successful.
     *
     * \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node
     * will be allocated from the OS. This may not be lock-free. \throws if memory allocator throws
     * */
    bool unsynchronized_push( T&& t )
    {
        node* n = pool.template construct< false, false >( std::forward< T >( t ), pool.null_handle() );

        if ( n == NULL )
            return false;

        for ( ;; ) {
            tagged_node_handle tail     = tail_.load( memory_order_relaxed );
            tagged_node_handle next     = tail->next.load( memory_order_relaxed );
            node*              next_ptr = next.get_ptr();

            if ( next_ptr == 0 ) {
                tail->next.store( tagged_node_handle( n, next.get_next_tag() ), memory_order_relaxed );
                tail_.store( tagged_node_handle( n, tail.get_next_tag() ), memory_order_relaxed );
                return true;
            } else
                tail_.store( tagged_node_handle( next_ptr, tail.get_next_tag() ), memory_order_relaxed );
        }
    }

    /** Pops object from queue.
     *
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Thread-safe and non-blocking. Might modify return argument even if operation fails.
     * */
    bool pop( T& ret )
    {
        return pop< T >( ret );
    }

    /** Pops object from queue.
     *
     * \pre type U must be constructible by T and copyable, or T must be convertible to U
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Thread-safe and non-blocking. Might modify return argument even if operation fails.
     * */
    template < typename U >
    bool pop( U& ret )
    {
        for ( ;; ) {
            tagged_node_handle head     = head_.load( memory_order_acquire );
            node*              head_ptr = pool.get_pointer( head );

            tagged_node_handle tail     = tail_.load( memory_order_acquire );
            tagged_node_handle next     = head_ptr->next.load( memory_order_acquire );
            node*              next_ptr = pool.get_pointer( next );

            tagged_node_handle head2 = head_.load( memory_order_acquire );
            if ( BOOST_LIKELY( head == head2 ) ) {
                if ( pool.get_handle( head ) == pool.get_handle( tail ) ) {
                    if ( next_ptr == 0 )
                        return false;

                    tagged_node_handle new_tail( pool.get_handle( next ), tail.get_next_tag() );
                    tail_.compare_exchange_strong( tail, new_tail );

                } else {
                    if ( next_ptr == 0 )
                        /* this check is not part of the original algorithm as published by michael and scott
                         *
                         * however we reuse the tagged_ptr part for the freelist and clear the next part during node
                         * allocation. we can observe a null-pointer here.
                         * */
                        continue;
                    detail::copy_payload( next_ptr->data, ret );

                    tagged_node_handle new_head( pool.get_handle( next ), head.get_next_tag() );
                    if ( head_.compare_exchange_weak( head, new_head ) ) {
                        pool.template destruct< true >( head );
                        return true;
                    }
                }
            }
        }
    }

#if !defined( BOOST_NO_CXX17_HDR_OPTIONAL ) || defined( BOOST_DOXYGEN_INVOKED )
    /** Pops object from queue, returning a std::optional<>
     *
     * \returns `std::optional` with value if successful, `std::nullopt` if queue is empty.
     *
     * \note Thread-safe and non-blocking
     *
     * */
    std::optional< T > pop( uses_optional_t )
    {
        T to_dequeue;
        if ( pop( to_dequeue ) )
            return to_dequeue;
        else
            return std::nullopt;
    }

    /** Pops object from queue, returning a std::optional<>
     *
     * \pre type T must be convertible to U
     * \returns `std::optional` with value if successful, `std::nullopt` if queue is empty.
     *
     * \note Thread-safe and non-blocking
     *
     * */
    template < typename U >
    std::optional< U > pop( uses_optional_t )
    {
        U to_dequeue;
        if ( pop( to_dequeue ) )
            return to_dequeue;
        else
            return std::nullopt;
    }
#endif

    /** Pops object from queue.
     *
     * \post if pop operation is successful, object will be copied to ret.
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Not thread-safe, but non-blocking. Might modify return argument even if operation fails.
     *
     * */
    bool unsynchronized_pop( T& ret )
    {
        return unsynchronized_pop< T >( ret );
    }

    /** Pops object from queue.
     *
     * \pre type U must be constructible by T and copyable, or T must be convertible to U
     * \post if pop operation is successful, object will be copied to ret.
     *
     * \returns true, if the pop operation is successful, false if queue was empty.
     *
     * \note Not thread-safe, but non-blocking. Might modify return argument even if operation fails.
     *
     * */
    template < typename U >
    bool unsynchronized_pop( U& ret )
    {
        for ( ;; ) {
            tagged_node_handle head     = head_.load( memory_order_relaxed );
            node*              head_ptr = pool.get_pointer( head );
            tagged_node_handle tail     = tail_.load( memory_order_relaxed );
            tagged_node_handle next     = head_ptr->next.load( memory_order_relaxed );
            node*              next_ptr = pool.get_pointer( next );

            if ( pool.get_handle( head ) == pool.get_handle( tail ) ) {
                if ( next_ptr == 0 )
                    return false;

                tagged_node_handle new_tail( pool.get_handle( next ), tail.get_next_tag() );
                tail_.store( new_tail );
            } else {
                if ( next_ptr == 0 )
                    /* this check is not part of the original algorithm as published by michael and scott
                     *
                     * however we reuse the tagged_ptr part for the freelist and clear the next part during node
                     * allocation. we can observe a null-pointer here.
                     * */
                    continue;
                detail::copy_payload( next_ptr->data, ret );
                tagged_node_handle new_head( pool.get_handle( next ), head.get_next_tag() );
                head_.store( new_head );
                pool.template destruct< false >( head );
                return true;
            }
        }
    }

    /** consumes one element via a functor
     *
     *  pops one element from the queue and applies the functor on this object
     *
     * \returns true, if one element was consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template < typename Functor >
    bool consume_one( Functor&& f )
    {
        T    element;
        bool success = pop( element );
        if ( success )
            f( std::move( element ) );

        return success;
    }

    /** consumes all elements via a functor
     *
     * sequentially pops all elements from the queue and applies the functor on each object
     *
     * \returns number of elements that are consumed
     *
     * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
     * */
    template < typename Functor >
    size_t consume_all( Functor&& f )
    {
        size_t element_count = 0;
        while ( consume_one( f ) )
            element_count += 1;

        return element_count;
    }

private:
#ifndef BOOST_DOXYGEN_INVOKED
    atomic< tagged_node_handle > head_;
    static constexpr int         padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof( tagged_node_handle );
    char                         padding1[ padding_size ];
    atomic< tagged_node_handle > tail_;
    char                         padding2[ padding_size ];

    pool_t pool;
#endif
};

}} // namespace boost::lockfree

#if defined( BOOST_INTEL ) && ( BOOST_INTEL_CXX_VERSION > 1000 )
#    pragma warning( pop )
#endif

#if defined( _MSC_VER )
#    pragma warning( pop )
#endif

#endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */