boost/lockfree/queue.hpp
// lock-free queue from
// Michael, M. M. and Scott, M. L.,
// "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
//
// Copyright (C) 2008-2013 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#define BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#include <boost/assert.hpp>
#include <boost/config.hpp> // for BOOST_LIKELY & BOOST_ALIGNMENT
#include <boost/core/allocator_access.hpp>
#include <boost/parameter/optional.hpp>
#include <boost/parameter/parameters.hpp>
#include <boost/static_assert.hpp>
#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/freelist.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/tagged_ptr.hpp>
#include <boost/lockfree/detail/uses_optional.hpp>
#include <boost/lockfree/lockfree_forward.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
#if defined( _MSC_VER )
# pragma warning( push )
# pragma warning( disable : 4324 ) // structure was padded due to __declspec(align())
#endif
#if defined( BOOST_INTEL ) && ( BOOST_INTEL_CXX_VERSION > 1000 )
# pragma warning( push )
# pragma warning( disable : 488 ) // template parameter unused in declaring parameter types,
// gets erronously triggered the queue constructor which
// takes an allocator of another type and rebinds it
#endif
namespace boost { namespace lockfree {
#ifndef BOOST_DOXYGEN_INVOKED
namespace detail {
typedef parameter::parameters< boost::parameter::optional< tag::allocator >, boost::parameter::optional< tag::capacity > >
queue_signature;
} /* namespace detail */
#endif
/** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
* construction/destruction has to be synchronized. It uses a freelist for memory management,
* freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
*
* \b Policies:
* - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
* Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
* If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are
* addressed by array indexing. This limits the possible size of the queue to the number of elements that can be
* addressed by the index type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange
* instructions, this is the best way to achieve lock-freedom.
*
* - \ref boost::lockfree::capacity, optional \n
* If this template argument is passed to the options, the size of the queue is set at compile-time.\n
* This option implies \c fixed_sized<true>
*
* - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
* Specifies the allocator that is used for the internal freelist
*
* \b Requirements:
* - T must have a copy constructor
* - T must have a trivial assignment operator
* - T must have a trivial destructor
*
* */
template < typename T, typename... Options >
#if !defined( BOOST_NO_CXX20_HDR_CONCEPTS )
requires( std::is_copy_assignable_v< T >,
std::is_trivially_assignable_v< T&, T >,
std::is_trivially_destructible_v< T > )
#endif
class queue
{
private:
#ifndef BOOST_DOXYGEN_INVOKED
BOOST_STATIC_ASSERT( ( std::is_trivially_destructible< T >::value ) );
BOOST_STATIC_ASSERT( ( std::is_trivially_assignable< T&, T >::value ) );
typedef typename detail::queue_signature::bind< Options... >::type bound_args;
static constexpr bool has_capacity = detail::extract_capacity< bound_args >::has_capacity;
static constexpr size_t capacity
= detail::extract_capacity< bound_args >::capacity + 1; // the queue uses one dummy node
static constexpr bool fixed_sized = detail::extract_fixed_sized< bound_args >::value;
static constexpr bool node_based = !( has_capacity || fixed_sized );
static constexpr bool compile_time_sized = has_capacity;
struct BOOST_ALIGNMENT( BOOST_LOCKFREE_CACHELINE_BYTES ) node
{
typedef typename detail::select_tagged_handle< node, node_based >::tagged_handle_type tagged_node_handle;
typedef typename detail::select_tagged_handle< node, node_based >::handle_type handle_type;
node( T const& v, handle_type null_handle ) :
data( v )
{
/* increment tag to avoid ABA problem */
tagged_node_handle old_next = next.load( memory_order_relaxed );
tagged_node_handle new_next( null_handle, old_next.get_next_tag() );
next.store( new_next, memory_order_release );
}
node( handle_type null_handle ) :
next( tagged_node_handle( null_handle, 0 ) )
{}
node( void )
{}
atomic< tagged_node_handle > next;
T data;
};
typedef detail::extract_allocator_t< bound_args, node > node_allocator;
typedef detail::select_freelist_t< node, node_allocator, compile_time_sized, fixed_sized, capacity > pool_t;
typedef typename pool_t::tagged_node_handle tagged_node_handle;
typedef typename detail::select_tagged_handle< node, node_based >::handle_type handle_type;
void initialize( void )
{
node* n = pool.template construct< true, false >( pool.null_handle() );
tagged_node_handle dummy_node( pool.get_handle( n ), 0 );
head_.store( dummy_node, memory_order_relaxed );
tail_.store( dummy_node, memory_order_release );
}
struct implementation_defined
{
typedef node_allocator allocator;
typedef std::size_t size_type;
};
#endif
public:
typedef T value_type;
typedef typename implementation_defined::allocator allocator;
typedef typename implementation_defined::size_type size_type;
/**
* \return true, if implementation is lock-free.
*
* \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
* On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there
* is no possibility to provide a completely accurate implementation, because one would need to test every internal
* node, which is impossible if further nodes will be allocated from the operating system.
* */
bool is_lock_free( void ) const
{
return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
}
/** Construct a fixed-sized queue
*
* \pre Must specify a capacity<> argument
* */
queue( void )
#if !defined( BOOST_NO_CXX20_HDR_CONCEPTS )
requires( has_capacity )
#endif
:
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( node_allocator(), capacity )
{
// Don't use BOOST_STATIC_ASSERT() here since it will be evaluated when compiling
// this function and this function may be compiled even when it isn't being used.
BOOST_ASSERT( has_capacity );
initialize();
}
/** Construct a fixed-sized queue with a custom allocator
*
* \pre Must specify a capacity<> argument
* */
template < typename U, typename Enabler = std::enable_if< has_capacity > >
explicit queue( typename boost::allocator_rebind< node_allocator, U >::type const& alloc ) :
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( alloc, capacity )
{
initialize();
}
/** Construct a fixed-sized queue with a custom allocator
*
* \pre Must specify a capacity<> argument
* */
template < typename Enabler = std::enable_if< has_capacity > >
explicit queue( allocator const& alloc ) :
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( alloc, capacity )
{
initialize();
}
/** Construct a variable-sized queue
*
* Allocate n nodes initially for the freelist
*
* \pre Must \b not specify a capacity<> argument
* */
template < typename Enabler = std::enable_if< !has_capacity > >
explicit queue( size_type n ) :
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( node_allocator(), n + 1 )
{
initialize();
}
/** Construct a variable-sized queue with a custom allocator
*
* Allocate n nodes initially for the freelist
*
* \pre Must \b not specify a capacity<> argument
* */
template < typename U, typename Enabler = std::enable_if< !has_capacity > >
queue( size_type n, typename boost::allocator_rebind< node_allocator, U >::type const& alloc ) :
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( alloc, n + 1 )
{
initialize();
}
/** Construct a variable-sized queue with a custom allocator
*
* Allocate n nodes initially for the freelist
*
* \pre Must \b not specify a capacity<> argument
* */
template < typename Enabler = std::enable_if< !has_capacity > >
queue( size_type n, allocator const& alloc ) :
head_( tagged_node_handle( 0, 0 ) ),
tail_( tagged_node_handle( 0, 0 ) ),
pool( alloc, n + 1 )
{
initialize();
}
queue( const queue& ) = delete;
queue& operator=( const queue& ) = delete;
queue( queue&& ) = delete;
queue& operator=( queue&& ) = delete;
/** \copydoc boost::lockfree::stack::reserve
* */
void reserve( size_type n )
{
pool.template reserve< true >( n );
}
/** \copydoc boost::lockfree::stack::reserve_unsafe
* */
void reserve_unsafe( size_type n )
{
pool.template reserve< false >( n );
}
/** Destroys queue, free all nodes from freelist.
* */
~queue( void )
{
consume_all( []( const T& ) {} );
pool.template destruct< false >( head_.load( memory_order_relaxed ) );
}
/** Check if the queue is empty
*
* \return true, if the queue is empty, false otherwise
* \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use
* this value in program logic.
* */
bool empty( void ) const
{
return pool.get_handle( head_.load() ) == pool.get_handle( tail_.load() );
}
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will
* be allocated from the OS. This may not be lock-free.
* */
bool push( const T& t )
{
return do_push< false >( t );
}
/// \copydoc boost::lockfree::queue::push(const T & t)
bool push( T&& t )
{
return do_push< false >( std::forward< T >( t ) );
}
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
* \throws if memory allocator throws
* */
bool bounded_push( const T& t )
{
return do_push< true >( t );
}
/// \copydoc boost::lockfree::queue::bounded_push(const T & t)
bool bounded_push( T&& t )
{
return do_push< true >( std::forward< T >( t ) );
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
template < bool Bounded >
bool do_push( T&& t )
{
node* n = pool.template construct< true, Bounded >( std::forward< T >( t ), pool.null_handle() );
return do_push_node( n );
}
template < bool Bounded >
bool do_push( T const& t )
{
node* n = pool.template construct< true, Bounded >( t, pool.null_handle() );
return do_push_node( n );
}
bool do_push_node( node* n )
{
handle_type node_handle = pool.get_handle( n );
if ( n == NULL )
return false;
for ( ;; ) {
tagged_node_handle tail = tail_.load( memory_order_acquire );
node* tail_node = pool.get_pointer( tail );
tagged_node_handle next = tail_node->next.load( memory_order_acquire );
node* next_ptr = pool.get_pointer( next );
tagged_node_handle tail2 = tail_.load( memory_order_acquire );
if ( BOOST_LIKELY( tail == tail2 ) ) {
if ( next_ptr == 0 ) {
tagged_node_handle new_tail_next( node_handle, next.get_next_tag() );
if ( tail_node->next.compare_exchange_weak( next, new_tail_next ) ) {
tagged_node_handle new_tail( node_handle, tail.get_next_tag() );
tail_.compare_exchange_strong( tail, new_tail );
return true;
}
} else {
tagged_node_handle new_tail( pool.get_handle( next_ptr ), tail.get_next_tag() );
tail_.compare_exchange_strong( tail, new_tail );
}
}
}
}
#endif
public:
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node
* will be allocated from the OS. This may not be lock-free. \throws if memory allocator throws
* */
bool unsynchronized_push( T&& t )
{
node* n = pool.template construct< false, false >( std::forward< T >( t ), pool.null_handle() );
if ( n == NULL )
return false;
for ( ;; ) {
tagged_node_handle tail = tail_.load( memory_order_relaxed );
tagged_node_handle next = tail->next.load( memory_order_relaxed );
node* next_ptr = next.get_ptr();
if ( next_ptr == 0 ) {
tail->next.store( tagged_node_handle( n, next.get_next_tag() ), memory_order_relaxed );
tail_.store( tagged_node_handle( n, tail.get_next_tag() ), memory_order_relaxed );
return true;
} else
tail_.store( tagged_node_handle( next_ptr, tail.get_next_tag() ), memory_order_relaxed );
}
}
/** Pops object from queue.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Thread-safe and non-blocking. Might modify return argument even if operation fails.
* */
bool pop( T& ret )
{
return pop< T >( ret );
}
/** Pops object from queue.
*
* \pre type U must be constructible by T and copyable, or T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Thread-safe and non-blocking. Might modify return argument even if operation fails.
* */
template < typename U >
bool pop( U& ret )
{
for ( ;; ) {
tagged_node_handle head = head_.load( memory_order_acquire );
node* head_ptr = pool.get_pointer( head );
tagged_node_handle tail = tail_.load( memory_order_acquire );
tagged_node_handle next = head_ptr->next.load( memory_order_acquire );
node* next_ptr = pool.get_pointer( next );
tagged_node_handle head2 = head_.load( memory_order_acquire );
if ( BOOST_LIKELY( head == head2 ) ) {
if ( pool.get_handle( head ) == pool.get_handle( tail ) ) {
if ( next_ptr == 0 )
return false;
tagged_node_handle new_tail( pool.get_handle( next ), tail.get_next_tag() );
tail_.compare_exchange_strong( tail, new_tail );
} else {
if ( next_ptr == 0 )
/* this check is not part of the original algorithm as published by michael and scott
*
* however we reuse the tagged_ptr part for the freelist and clear the next part during node
* allocation. we can observe a null-pointer here.
* */
continue;
detail::copy_payload( next_ptr->data, ret );
tagged_node_handle new_head( pool.get_handle( next ), head.get_next_tag() );
if ( head_.compare_exchange_weak( head, new_head ) ) {
pool.template destruct< true >( head );
return true;
}
}
}
}
}
#if !defined( BOOST_NO_CXX17_HDR_OPTIONAL ) || defined( BOOST_DOXYGEN_INVOKED )
/** Pops object from queue, returning a std::optional<>
*
* \returns `std::optional` with value if successful, `std::nullopt` if queue is empty.
*
* \note Thread-safe and non-blocking
*
* */
std::optional< T > pop( uses_optional_t )
{
T to_dequeue;
if ( pop( to_dequeue ) )
return to_dequeue;
else
return std::nullopt;
}
/** Pops object from queue, returning a std::optional<>
*
* \pre type T must be convertible to U
* \returns `std::optional` with value if successful, `std::nullopt` if queue is empty.
*
* \note Thread-safe and non-blocking
*
* */
template < typename U >
std::optional< U > pop( uses_optional_t )
{
U to_dequeue;
if ( pop( to_dequeue ) )
return to_dequeue;
else
return std::nullopt;
}
#endif
/** Pops object from queue.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Not thread-safe, but non-blocking. Might modify return argument even if operation fails.
*
* */
bool unsynchronized_pop( T& ret )
{
return unsynchronized_pop< T >( ret );
}
/** Pops object from queue.
*
* \pre type U must be constructible by T and copyable, or T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
*
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Not thread-safe, but non-blocking. Might modify return argument even if operation fails.
*
* */
template < typename U >
bool unsynchronized_pop( U& ret )
{
for ( ;; ) {
tagged_node_handle head = head_.load( memory_order_relaxed );
node* head_ptr = pool.get_pointer( head );
tagged_node_handle tail = tail_.load( memory_order_relaxed );
tagged_node_handle next = head_ptr->next.load( memory_order_relaxed );
node* next_ptr = pool.get_pointer( next );
if ( pool.get_handle( head ) == pool.get_handle( tail ) ) {
if ( next_ptr == 0 )
return false;
tagged_node_handle new_tail( pool.get_handle( next ), tail.get_next_tag() );
tail_.store( new_tail );
} else {
if ( next_ptr == 0 )
/* this check is not part of the original algorithm as published by michael and scott
*
* however we reuse the tagged_ptr part for the freelist and clear the next part during node
* allocation. we can observe a null-pointer here.
* */
continue;
detail::copy_payload( next_ptr->data, ret );
tagged_node_handle new_head( pool.get_handle( next ), head.get_next_tag() );
head_.store( new_head );
pool.template destruct< false >( head );
return true;
}
}
}
/** consumes one element via a functor
*
* pops one element from the queue and applies the functor on this object
*
* \returns true, if one element was consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template < typename Functor >
bool consume_one( Functor&& f )
{
T element;
bool success = pop( element );
if ( success )
f( std::move( element ) );
return success;
}
/** consumes all elements via a functor
*
* sequentially pops all elements from the queue and applies the functor on each object
*
* \returns number of elements that are consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template < typename Functor >
size_t consume_all( Functor&& f )
{
size_t element_count = 0;
while ( consume_one( f ) )
element_count += 1;
return element_count;
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
atomic< tagged_node_handle > head_;
static constexpr int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof( tagged_node_handle );
char padding1[ padding_size ];
atomic< tagged_node_handle > tail_;
char padding2[ padding_size ];
pool_t pool;
#endif
};
}} // namespace boost::lockfree
#if defined( BOOST_INTEL ) && ( BOOST_INTEL_CXX_VERSION > 1000 )
# pragma warning( pop )
#endif
#if defined( _MSC_VER )
# pragma warning( pop )
#endif
#endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */