boost/log/sinks/async_frontend.hpp
/*
* Copyright Andrey Semashev 2007 - 2015.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
/*!
* \file async_frontend.hpp
* \author Andrey Semashev
* \date 14.07.2009
*
* The header contains implementation of asynchronous sink frontend.
*/
#ifndef BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_
#define BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_
#include <thread>
#include <mutex>
#include <condition_variable>
#include <exception> // std::terminate
#include <boost/log/detail/config.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif
#if defined(BOOST_LOG_NO_THREADS)
#error Boost.Log: Asynchronous sink frontend is only supported in multithreaded environment
#endif
#include <boost/memory_order.hpp>
#include <boost/atomic/atomic.hpp>
#include <boost/smart_ptr/shared_ptr.hpp>
#include <boost/smart_ptr/make_shared_object.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/comparison/equal.hpp>
#include <boost/log/exceptions.hpp>
#include <boost/log/detail/locking_ptr.hpp>
#include <boost/log/detail/parameter_tools.hpp>
#include <boost/log/core/record_view.hpp>
#include <boost/log/sinks/basic_sink_frontend.hpp>
#include <boost/log/sinks/frontend_requirements.hpp>
#include <boost/log/sinks/unbounded_fifo_queue.hpp>
#include <boost/log/keywords/start_thread.hpp>
#include <boost/log/detail/header.hpp>
namespace boost {
BOOST_LOG_OPEN_NAMESPACE
namespace sinks {
#ifndef BOOST_LOG_DOXYGEN_PASS
#define BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_1(z, n, data)\
template< typename T0 >\
explicit asynchronous_sink(T0 const& arg0, typename boost::log::aux::enable_if_named_parameters< T0, boost::log::aux::sfinae_dummy >::type = boost::log::aux::sfinae_dummy()) :\
base_type(true),\
queue_base_type(arg0),\
m_pBackend(boost::make_shared< sink_backend_type >(arg0)),\
m_ActiveOperation(idle),\
m_StopRequested(false),\
m_FlushRequested(false)\
{\
if (arg0[keywords::start_thread | true])\
start_feeding_thread();\
}\
template< typename T0 >\
explicit asynchronous_sink(shared_ptr< sink_backend_type > const& backend, T0 const& arg0) :\
base_type(true),\
queue_base_type(arg0),\
m_pBackend(backend),\
m_ActiveOperation(idle),\
m_StopRequested(false),\
m_FlushRequested(false)\
{\
if (arg0[keywords::start_thread | true])\
start_feeding_thread();\
}
#define BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_N(z, n, data)\
template< BOOST_PP_ENUM_PARAMS_Z(z, n, typename T) >\
explicit asynchronous_sink(BOOST_PP_ENUM_BINARY_PARAMS_Z(z, n, T, const& arg)) :\
base_type(true),\
queue_base_type((BOOST_PP_ENUM_PARAMS_Z(z, n, arg))),\
m_pBackend(boost::make_shared< sink_backend_type >(BOOST_PP_ENUM_PARAMS_Z(z, n, arg))),\
m_ActiveOperation(idle),\
m_StopRequested(false),\
m_FlushRequested(false)\
{\
if ((BOOST_PP_ENUM_PARAMS_Z(z, n, arg))[keywords::start_thread | true])\
start_feeding_thread();\
}\
template< BOOST_PP_ENUM_PARAMS_Z(z, n, typename T) >\
explicit asynchronous_sink(shared_ptr< sink_backend_type > const& backend, BOOST_PP_ENUM_BINARY_PARAMS_Z(z, n, T, const& arg)) :\
base_type(true),\
queue_base_type((BOOST_PP_ENUM_PARAMS_Z(z, n, arg))),\
m_pBackend(backend),\
m_ActiveOperation(idle),\
m_StopRequested(false),\
m_FlushRequested(false)\
{\
if ((BOOST_PP_ENUM_PARAMS_Z(z, n, arg))[keywords::start_thread | true])\
start_feeding_thread();\
}
#define BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL(z, n, data)\
BOOST_PP_IF(BOOST_PP_EQUAL(n, 1), BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_1, BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_N)(z, n, data)
#endif // BOOST_LOG_DOXYGEN_PASS
/*!
* \brief Asynchronous logging sink frontend
*
* The frontend starts a separate thread on construction. All logging records are passed
* to the backend in this dedicated thread.
*
* The user can prevent spawning the internal thread by specifying \c start_thread parameter
* with the value of \c false on construction. In this case log records will be buffered
* in the internal queue until the user calls \c run, \c feed_records or \c flush in his own
* thread. Log record queueing strategy is specified in the \c QueueingStrategyT template
* parameter.
*/
template< typename SinkBackendT, typename QueueingStrategyT = unbounded_fifo_queue >
class asynchronous_sink :
public aux::make_sink_frontend_base< SinkBackendT >::type,
public QueueingStrategyT
{
typedef typename aux::make_sink_frontend_base< SinkBackendT >::type base_type;
typedef QueueingStrategyT queue_base_type;
private:
//! Backend synchronization mutex type
typedef std::recursive_mutex backend_mutex_type;
//! Frontend synchronization mutex type
typedef typename base_type::mutex_type frontend_mutex_type;
//! Operation bit mask
enum operation
{
idle = 0u,
feeding_records = 1u,
flushing = 3u
};
//! Function object to run the log record feeding thread
class run_func
{
public:
typedef void result_type;
private:
asynchronous_sink* m_self;
public:
explicit run_func(asynchronous_sink* self) BOOST_NOEXCEPT : m_self(self)
{
}
result_type operator()() const
{
m_self->run();
}
};
//! A scope guard that implements active operation management
class scoped_feeding_operation
{
private:
asynchronous_sink& m_self;
public:
//! Initializing constructor
explicit scoped_feeding_operation(asynchronous_sink& self) : m_self(self)
{
}
//! Destructor
~scoped_feeding_operation()
{
m_self.complete_feeding_operation();
}
BOOST_DELETED_FUNCTION(scoped_feeding_operation(scoped_feeding_operation const&))
BOOST_DELETED_FUNCTION(scoped_feeding_operation& operator= (scoped_feeding_operation const&))
};
//! A scope guard that resets a flag on destructor
class scoped_flag
{
private:
frontend_mutex_type& m_Mutex;
std::condition_variable_any& m_Cond;
boost::atomic< bool >& m_Flag;
public:
explicit scoped_flag(frontend_mutex_type& mut, std::condition_variable_any& cond, boost::atomic< bool >& f) :
m_Mutex(mut), m_Cond(cond), m_Flag(f)
{
}
~scoped_flag()
{
try
{
std::lock_guard< frontend_mutex_type > lock(m_Mutex);
m_Flag.store(false, boost::memory_order_relaxed);
m_Cond.notify_all();
}
catch (...)
{
}
}
BOOST_DELETED_FUNCTION(scoped_flag(scoped_flag const&))
BOOST_DELETED_FUNCTION(scoped_flag& operator= (scoped_flag const&))
};
public:
//! Sink implementation type
typedef SinkBackendT sink_backend_type;
//! \cond
static_assert(has_requirement< typename sink_backend_type::frontend_requirements, synchronized_feeding >::value, "Asynchronous sink frontend is incompatible with the specified backend: thread synchronization requirements are not met");
//! \endcond
#ifndef BOOST_LOG_DOXYGEN_PASS
//! A pointer type that locks the backend until it's destroyed
typedef boost::log::aux::locking_ptr< sink_backend_type, backend_mutex_type > locked_backend_ptr;
#else // BOOST_LOG_DOXYGEN_PASS
//! A pointer type that locks the backend until it's destroyed
typedef implementation_defined locked_backend_ptr;
#endif // BOOST_LOG_DOXYGEN_PASS
private:
//! Synchronization mutex
backend_mutex_type m_BackendMutex;
//! Pointer to the backend
const shared_ptr< sink_backend_type > m_pBackend;
//! Dedicated record feeding thread
std::thread m_DedicatedFeedingThread;
//! Condition variable to implement blocking operations
std::condition_variable_any m_BlockCond;
//! Currently active operation
operation m_ActiveOperation;
//! The flag indicates that the feeding loop has to be stopped
boost::atomic< bool > m_StopRequested;
//! The flag indicates that queue flush has been requested
boost::atomic< bool > m_FlushRequested;
public:
/*!
* Default constructor. Constructs the sink backend instance.
* Requires the backend to be default-constructible.
*
* \param start_thread If \c true, the frontend creates a thread to feed
* log records to the backend. Otherwise no thread is
* started and it is assumed that the user will call
* \c run, \c feed_records or \c flush himself.
*/
explicit asynchronous_sink(bool start_thread = true) :
base_type(true),
m_pBackend(boost::make_shared< sink_backend_type >()),
m_ActiveOperation(idle),
m_StopRequested(false),
m_FlushRequested(false)
{
if (start_thread)
start_feeding_thread();
}
/*!
* Constructor attaches user-constructed backend instance
*
* \param backend Pointer to the backend instance.
* \param start_thread If \c true, the frontend creates a thread to feed
* log records to the backend. Otherwise no thread is
* started and it is assumed that the user will call
* \c run, \c feed_records or \c flush himself.
*
* \pre \a backend is not \c NULL.
*/
explicit asynchronous_sink(shared_ptr< sink_backend_type > const& backend, bool start_thread = true) :
base_type(true),
m_pBackend(backend),
m_ActiveOperation(idle),
m_StopRequested(false),
m_FlushRequested(false)
{
if (start_thread)
start_feeding_thread();
}
/*!
* Constructor that passes arbitrary named parameters to the interprocess sink backend constructor.
* Refer to the backend documentation for the list of supported parameters.
*
* The frontend uses the following named parameters:
*
* \li start_thread - If \c true, the frontend creates a thread to feed
* log records to the backend. Otherwise no thread is
* started and it is assumed that the user will call
* \c run, \c feed_records or \c flush himself.
*/
#ifndef BOOST_LOG_DOXYGEN_PASS
BOOST_LOG_PARAMETRIZED_CONSTRUCTORS_GEN(BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL, ~)
#else
template< typename... Args >
explicit asynchronous_sink(Args&&... args);
#endif
/*!
* Destructor. Implicitly stops the dedicated feeding thread, if one is running.
*/
~asynchronous_sink() BOOST_NOEXCEPT BOOST_OVERRIDE
{
stop();
}
/*!
* Locking accessor to the attached backend
*/
locked_backend_ptr locked_backend()
{
return locked_backend_ptr(m_pBackend, m_BackendMutex);
}
/*!
* Enqueues the log record to the backend
*/
void consume(record_view const& rec) BOOST_OVERRIDE
{
if (BOOST_UNLIKELY(m_FlushRequested.load(boost::memory_order_acquire)))
{
std::unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex());
// Wait until flush is done
while (m_FlushRequested.load(boost::memory_order_acquire))
m_BlockCond.wait(lock);
}
queue_base_type::enqueue(rec);
}
/*!
* The method attempts to pass logging record to the backend
*/
bool try_consume(record_view const& rec) BOOST_OVERRIDE
{
if (!m_FlushRequested.load(boost::memory_order_acquire))
return queue_base_type::try_enqueue(rec);
else
return false;
}
/*!
* The method starts record feeding loop and effectively blocks until either of this happens:
*
* \li the thread is interrupted due to a call to \c stop
* \li an exception is thrown while processing a log record in the backend, and the exception is
* not terminated by the exception handler, if one is installed
*
* \pre The sink frontend must be constructed without spawning a dedicated thread
*/
void run()
{
// First check that no other thread is running
{
std::unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex());
if (start_feeding_operation(lock, feeding_records))
return;
}
scoped_feeding_operation guard(*this);
// Now start the feeding loop
while (true)
{
do_feed_records();
if (!m_StopRequested.load(boost::memory_order_acquire))
{
// Block until new record is available
record_view rec;
if (queue_base_type::dequeue_ready(rec))
base_type::feed_record(rec, m_BackendMutex, *m_pBackend);
}
else
break;
}
}
/*!
* The method softly interrupts record feeding loop. This method must be called when \c run,
* \c feed_records or \c flush method execution has to be interrupted. Unlike regular thread
* interruption, calling \c stop will not interrupt the record processing in the middle.
* Instead, the sink frontend will attempt to finish its business with the record in progress
* and return afterwards. This method can be called either if the sink was created with
* an internal dedicated thread, or if the feeding loop was initiated by user.
*
* If no record feeding operation is in progress, calling \c stop marks the sink frontend
* so that the next feeding operation stops immediately.
*
* \note Returning from this method does not guarantee that there are no records left buffered
* in the sink frontend. It is possible that log records keep coming during and after this
* method is called. At some point of execution of this method log records stop being processed,
* and all records that come after this point are put into the queue. These records will be
* processed upon further calls to \c run or \c feed_records.
*
* \note If the record feeding loop is being run in a user's thread (i.e. \c start_thread was specified
* as \c false on frontend construction), this method does not guarantee that upon return the thread
* has returned from the record feeding loop or that it won't enter it in the future. The method
* only ensures that the record feeding thread will eventually return from the feeding loop. It is
* user's responsibility to synchronize with the user's record feeding thread.
*/
void stop()
{
std::thread feeding_thread;
{
std::lock_guard< frontend_mutex_type > lock(base_type::frontend_mutex());
m_StopRequested.store(true, boost::memory_order_release);
queue_base_type::interrupt_dequeue();
m_DedicatedFeedingThread.swap(feeding_thread);
}
if (feeding_thread.joinable())
feeding_thread.join();
}
/*!
* The method feeds log records that may have been buffered to the backend and returns
*
* \pre The sink frontend must be constructed without spawning a dedicated thread
*/
void feed_records()
{
// First check that no other thread is running
{
std::unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex());
if (start_feeding_operation(lock, feeding_records))
return;
}
scoped_feeding_operation guard(*this);
// Now start the feeding loop
do_feed_records();
}
/*!
* The method feeds all log records that may have been buffered to the backend and returns.
* Unlike \c feed_records, in case of ordering queueing the method also feeds records
* that were enqueued during the ordering window, attempting to drain the queue completely.
*/
void flush() BOOST_OVERRIDE
{
{
std::unique_lock< frontend_mutex_type > lock(base_type::frontend_mutex());
if (static_cast< unsigned int >(m_ActiveOperation & feeding_records) != 0u)
{
// There is already a thread feeding records, let it do the job
m_FlushRequested.store(true, boost::memory_order_release);
queue_base_type::interrupt_dequeue();
while (!m_StopRequested.load(boost::memory_order_acquire) && m_FlushRequested.load(boost::memory_order_acquire))
m_BlockCond.wait(lock);
// The condition may have been signalled when the feeding operation was finishing.
// In that case records may not have been flushed, and we do the flush ourselves.
if (m_ActiveOperation != idle)
return;
}
m_ActiveOperation = flushing;
m_FlushRequested.store(true, boost::memory_order_relaxed);
}
scoped_feeding_operation guard(*this);
do_feed_records();
}
private:
#ifndef BOOST_LOG_DOXYGEN_PASS
//! The method spawns record feeding thread
void start_feeding_thread()
{
std::thread(run_func(this)).swap(m_DedicatedFeedingThread);
}
//! Starts record feeding operation. The method blocks or throws if another feeding operation is in progress.
bool start_feeding_operation(std::unique_lock< frontend_mutex_type >& lock, operation op)
{
while (m_ActiveOperation != idle)
{
if (BOOST_UNLIKELY(op == feeding_records && m_ActiveOperation == feeding_records))
BOOST_LOG_THROW_DESCR(unexpected_call, "Asynchronous sink frontend already runs a record feeding thread");
if (BOOST_UNLIKELY(m_StopRequested.load(boost::memory_order_relaxed)))
{
m_StopRequested.store(false, boost::memory_order_relaxed);
return true;
}
m_BlockCond.wait(lock);
}
m_ActiveOperation = op;
return false;
}
//! Completes record feeding operation
void complete_feeding_operation() BOOST_NOEXCEPT
{
try
{
std::lock_guard< frontend_mutex_type > lock(base_type::frontend_mutex());
m_ActiveOperation = idle;
m_StopRequested.store(false, boost::memory_order_relaxed);
m_BlockCond.notify_all();
}
catch (...)
{
}
}
//! The record feeding loop
void do_feed_records()
{
while (!m_StopRequested.load(boost::memory_order_acquire))
{
record_view rec;
bool dequeued = false;
if (BOOST_LIKELY(!m_FlushRequested.load(boost::memory_order_acquire)))
dequeued = queue_base_type::try_dequeue_ready(rec);
else
dequeued = queue_base_type::try_dequeue(rec);
if (dequeued)
base_type::feed_record(rec, m_BackendMutex, *m_pBackend);
else
break;
}
if (BOOST_UNLIKELY(m_FlushRequested.load(boost::memory_order_acquire)))
{
scoped_flag guard(base_type::frontend_mutex(), m_BlockCond, m_FlushRequested);
base_type::flush_backend(m_BackendMutex, *m_pBackend);
}
}
#endif // BOOST_LOG_DOXYGEN_PASS
};
#undef BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_1
#undef BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL_N
#undef BOOST_LOG_SINK_CTOR_FORWARD_INTERNAL
} // namespace sinks
BOOST_LOG_CLOSE_NAMESPACE // namespace log
} // namespace boost
#include <boost/log/detail/footer.hpp>
#endif // BOOST_LOG_SINKS_ASYNC_FRONTEND_HPP_INCLUDED_