boost/log/sinks/bounded_ordering_queue.hpp
/*
* Copyright Andrey Semashev 2007 - 2015.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
/*!
* \file bounded_ordering_queue.hpp
* \author Andrey Semashev
* \date 06.01.2012
*
* The header contains implementation of bounded ordering queueing strategy for
* the asynchronous sink frontend.
*/
#ifndef BOOST_LOG_SINKS_BOUNDED_ORDERING_QUEUE_HPP_INCLUDED_
#define BOOST_LOG_SINKS_BOUNDED_ORDERING_QUEUE_HPP_INCLUDED_
#include <boost/log/detail/config.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif
#if defined(BOOST_LOG_NO_THREADS)
#error Boost.Log: This header content is only supported in multithreaded environment
#endif
#include <cstddef>
#include <queue>
#include <vector>
#include <chrono>
#include <mutex>
#include <condition_variable>
#include <boost/log/detail/enqueued_record.hpp>
#include <boost/log/keywords/order.hpp>
#include <boost/log/keywords/ordering_window.hpp>
#include <boost/log/core/record_view.hpp>
#include <boost/log/detail/header.hpp>
namespace boost {
BOOST_LOG_OPEN_NAMESPACE
namespace sinks {
/*!
* \brief Bounded ordering log record queueing strategy
*
* The \c bounded_ordering_queue class is intended to be used with
* the \c asynchronous_sink frontend as a log record queueing strategy.
*
* This strategy provides the following properties to the record queueing mechanism:
*
* \li The queue has limited capacity specified by the \c MaxQueueSizeV template parameter.
* \li Upon reaching the size limit, the queue invokes the overflow handling strategy
* specified in the \c OverflowStrategyT template parameter to handle the situation.
* The library provides overflow handling strategies for most common cases:
* \c drop_on_overflow will silently discard the log record, and \c block_on_overflow
* will put the enqueueing thread to wait until there is space in the queue.
* \li The queue has a fixed latency window. This means that each log record put
* into the queue will normally not be dequeued for a certain period of time.
* \li The queue performs stable record ordering within the latency window.
* The ordering predicate can be specified in the \c OrderT template parameter.
*/
template< typename OrderT, std::size_t MaxQueueSizeV, typename OverflowStrategyT >
class bounded_ordering_queue :
private OverflowStrategyT
{
private:
typedef OverflowStrategyT overflow_strategy;
typedef std::mutex mutex_type;
typedef sinks::aux::enqueued_record enqueued_record;
typedef std::priority_queue<
enqueued_record,
std::vector< enqueued_record >,
enqueued_record::order< OrderT >
> queue_type;
private:
//! Ordering window duration
const std::chrono::steady_clock::duration m_ordering_window;
//! Synchronization primitive
mutex_type m_mutex;
//! Condition to block the consuming thread on
std::condition_variable m_cond;
//! Log record queue
queue_type m_queue;
//! Interruption flag
bool m_interruption_requested;
public:
/*!
* Returns ordering window size specified during initialization
*/
std::chrono::steady_clock::duration get_ordering_window() const
{
return m_ordering_window;
}
/*!
* Returns default ordering window size.
* The default window size is specific to the operating system thread scheduling mechanism.
*/
static BOOST_CONSTEXPR std::chrono::steady_clock::duration get_default_ordering_window() BOOST_NOEXCEPT
{
// The main idea behind this parameter is that the ordering window should be large enough
// to allow the frontend to order records from different threads on an attribute
// that contains system time. Thus this value should be:
// * No less than the minimum time resolution quant that Boost.DateTime provides on the current OS.
// For instance, on Windows it defaults to around 15-16 ms.
// * No less than thread switching quant on the current OS. For now 30 ms is large enough window size to
// switch threads on any known OS. It can be tuned for other platforms as needed.
return std::chrono::milliseconds(30);
}
protected:
//! Initializing constructor
template< typename ArgsT >
explicit bounded_ordering_queue(ArgsT const& args) :
m_ordering_window(std::chrono::duration_cast< std::chrono::steady_clock::duration >(args[keywords::ordering_window || &bounded_ordering_queue::get_default_ordering_window])),
m_queue(args[keywords::order]),
m_interruption_requested(false)
{
}
//! Enqueues log record to the queue
void enqueue(record_view const& rec)
{
std::unique_lock< mutex_type > lock(m_mutex);
std::size_t size = m_queue.size();
for (; size >= MaxQueueSizeV; size = m_queue.size())
{
if (!overflow_strategy::on_overflow(rec, lock))
return;
}
m_queue.push(enqueued_record(rec));
if (size == 0)
m_cond.notify_one();
}
//! Attempts to enqueue log record to the queue
bool try_enqueue(record_view const& rec)
{
std::unique_lock< mutex_type > lock(m_mutex, std::try_to_lock);
if (lock.owns_lock())
{
const std::size_t size = m_queue.size();
// Do not invoke the bounding strategy in case of overflow as it may block
if (size < MaxQueueSizeV)
{
m_queue.push(enqueued_record(rec));
if (size == 0)
m_cond.notify_one();
return true;
}
}
return false;
}
//! Attempts to dequeue a log record ready for processing from the queue, does not block if the queue is empty
bool try_dequeue_ready(record_view& rec)
{
std::lock_guard< mutex_type > lock(m_mutex);
const std::size_t size = m_queue.size();
if (size > 0)
{
const auto now = std::chrono::steady_clock::now();
enqueued_record const& elem = m_queue.top();
if ((now - elem.m_timestamp) >= m_ordering_window)
{
// We got a new element
rec = elem.m_record;
m_queue.pop();
overflow_strategy::on_queue_space_available();
return true;
}
}
return false;
}
//! Attempts to dequeue log record from the queue, does not block if the queue is empty
bool try_dequeue(record_view& rec)
{
std::lock_guard< mutex_type > lock(m_mutex);
const std::size_t size = m_queue.size();
if (size > 0)
{
enqueued_record const& elem = m_queue.top();
rec = elem.m_record;
m_queue.pop();
overflow_strategy::on_queue_space_available();
return true;
}
return false;
}
//! Dequeues log record from the queue, blocks if the queue is empty
bool dequeue_ready(record_view& rec)
{
std::unique_lock< mutex_type > lock(m_mutex);
while (!m_interruption_requested)
{
const std::size_t size = m_queue.size();
if (size > 0)
{
const auto now = std::chrono::steady_clock::now();
enqueued_record const& elem = m_queue.top();
const auto difference = now - elem.m_timestamp;
if (difference >= m_ordering_window)
{
rec = elem.m_record;
m_queue.pop();
overflow_strategy::on_queue_space_available();
return true;
}
else
{
// Wait until the element becomes ready to be processed
m_cond.wait_for(lock, m_ordering_window - difference);
}
}
else
{
m_cond.wait(lock);
}
}
m_interruption_requested = false;
return false;
}
//! Wakes a thread possibly blocked in the \c dequeue method
void interrupt_dequeue()
{
std::lock_guard< mutex_type > lock(m_mutex);
m_interruption_requested = true;
overflow_strategy::interrupt();
m_cond.notify_one();
}
};
} // namespace sinks
BOOST_LOG_CLOSE_NAMESPACE // namespace log
} // namespace boost
#include <boost/log/detail/footer.hpp>
#endif // BOOST_LOG_SINKS_BOUNDED_ORDERING_QUEUE_HPP_INCLUDED_