boost/math/cstdfloat/cstdfloat_complex_std.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2014.
// Copyright John Maddock 2014.
// Copyright Paul Bristow 2014.
// Distributed under the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Implement a specialization of std::complex<> for *anything* that
// is defined as BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE.
#ifndef BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
#define BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_
#if defined(__GNUC__)
#pragma GCC system_header
#endif
#include <complex>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/cxx03_warn.hpp>
namespace std
{
// Forward declarations.
template<class float_type>
class complex;
template<>
class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>;
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& = 0);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
int);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&,
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow (const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE&,
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
template<class char_type, class traits_type>
inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>&, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
template<class char_type, class traits_type>
inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>&, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>&);
// Template specialization of the complex class.
template<>
class complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
{
public:
typedef BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE value_type;
complex(const complex<float>&);
complex(const complex<double>&);
complex(const complex<long double>&);
#if defined(BOOST_NO_CXX11_CONSTEXPR)
complex(const value_type& r = value_type(),
const value_type& i = value_type()) : re(r),
im(i) { }
template<typename X>
explicit complex(const complex<X>& x) : re(x.real()),
im(x.imag()) { }
const value_type& real() const { return re; }
const value_type& imag() const { return im; }
value_type& real() { return re; }
value_type& imag() { return im; }
#else
constexpr complex(const value_type& r = value_type(),
const value_type& i = value_type()) : re(r),
im(i) { }
template<typename X>
explicit constexpr complex(const complex<X>& x) : re(x.real()),
im(x.imag()) { }
value_type real() const { return re; }
value_type imag() const { return im; }
#endif
void real(value_type r) { re = r; }
void imag(value_type i) { im = i; }
complex<value_type>& operator=(const value_type& v)
{
re = v;
im = value_type(0);
return *this;
}
complex<value_type>& operator+=(const value_type& v)
{
re += v;
return *this;
}
complex<value_type>& operator-=(const value_type& v)
{
re -= v;
return *this;
}
complex<value_type>& operator*=(const value_type& v)
{
re *= v;
im *= v;
return *this;
}
complex<value_type>& operator/=(const value_type& v)
{
re /= v;
im /= v;
return *this;
}
template<typename X>
complex<value_type>& operator=(const complex<X>& x)
{
re = x.real();
im = x.imag();
return *this;
}
template<typename X>
complex<value_type>& operator+=(const complex<X>& x)
{
re += x.real();
im += x.imag();
return *this;
}
template<typename X>
complex<value_type>& operator-=(const complex<X>& x)
{
re -= x.real();
im -= x.imag();
return *this;
}
template<typename X>
complex<value_type>& operator*=(const complex<X>& x)
{
const value_type tmp_real = (re * x.real()) - (im * x.imag());
im = (re * x.imag()) + (im * x.real());
re = tmp_real;
return *this;
}
template<typename X>
complex<value_type>& operator/=(const complex<X>& x)
{
const value_type tmp_real = (re * x.real()) + (im * x.imag());
const value_type the_norm = std::norm(x);
im = ((im * x.real()) - (re * x.imag())) / the_norm;
re = tmp_real / the_norm;
return *this;
}
private:
value_type re;
value_type im;
};
// Constructors from built-in complex representation of floating-point types.
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<float>& f) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( f.imag())) { }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<double>& d) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE( d.imag())) { }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::complex(const complex<long double>& ld) : re(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.real())), im(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(ld.imag())) { }
} // namespace std
namespace boost { namespace math { namespace cstdfloat { namespace detail {
template<class float_type> inline std::complex<float_type> multiply_by_i(const std::complex<float_type>& x)
{
// Multiply x (in C) by I (the imaginary component), and return the result.
return std::complex<float_type>(-x.imag(), x.real());
}
} } } } // boost::math::cstdfloat::detail
namespace std
{
// ISO/IEC 14882:2011, Section 26.4.7, specific values.
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE real(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.real(); }
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE imag(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return x.imag(); }
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE abs (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::sqrt; return sqrt ((real(x) * real(x)) + (imag(x) * imag(x))); }
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE arg (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { using std::atan2; return atan2(x.imag(), x.real()); }
inline BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE norm(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return (real(x) * real(x)) + (imag(x) * imag(x)); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> conj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(x.real(), -x.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> proj (const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE m = (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)();
if ( (x.real() > m)
|| (x.real() < -m)
|| (x.imag() > m)
|| (x.imag() < -m))
{
// We have an infinity, return a normalized infinity, respecting the sign of the imaginary part:
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(), x.imag() < 0 ? -0 : 0);
}
return x;
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> polar(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& rho,
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& theta)
{
using std::sin;
using std::cos;
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rho * cos(theta), rho * sin(theta));
}
// Global add, sub, mul, div.
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v.real(), u.imag() + v.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v.real(), u.imag() - v.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u.real() * v.real()) - (u.imag() * v.imag()),
(u.real() * v.imag()) + (u.imag() * v.real()));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v)
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE the_norm = std::norm(v);
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(((u.real() * v.real()) + (u.imag() * v.imag())) / the_norm,
((u.imag() * v.real()) - (u.real() * v.imag())) / the_norm);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() + v, u.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() - v, u.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() * v, u.imag() * v); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u.real() / v, u.imag() / v); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u + v.real(), v.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u - v.real(), -v.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator*(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(u * v.real(), u * v.imag()); }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator/(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& u, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& v) { const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE v_norm = norm(v); return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>((u * v.real()) / v_norm, (-u * v.imag()) / v_norm); }
// Unary plus / minus.
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator+(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return u; }
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> operator-(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& u) { return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(-u.real(), -u.imag()); }
// Equality and inequality.
inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() == y.real()) && (x.imag() == y.imag())); }
inline bool operator==(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() == y) && (x.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
inline bool operator==(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x == y.real()) && (y.imag() == BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x.real() != y.real()) || (x.imag() != y.imag())); }
inline bool operator!=(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x, const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& y) { return ((x.real() != y) || (x.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
inline bool operator!=(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x, const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& y) { return ((x != y.real()) || (y.imag() != BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0))); }
// ISO/IEC 14882:2011, Section 26.4.8, transcendentals.
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sqrt(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::fabs;
using std::sqrt;
// Compute sqrt(x) for x in C:
// sqrt(x) = (s , xi / 2s) : for xr > 0,
// (|xi| / 2s, +-s) : for xr < 0,
// (sqrt(xi), sqrt(xi) : for xr = 0,
// where s = sqrt{ [ |xr| + sqrt(xr^2 + xi^2) ] / 2 },
// and the +- sign is the same as the sign of xi.
if(x.real() > 0)
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(s, x.imag() / (s * 2));
}
else if(x.real() < 0)
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE s = sqrt((fabs(x.real()) + std::abs(x)) / 2);
const bool imag_is_neg = (x.imag() < 0);
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(fabs(x.imag()) / (s * 2), (imag_is_neg ? -s : s));
}
else
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sqrt_xi_half = sqrt(x.imag() / 2);
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sqrt_xi_half, sqrt_xi_half);
}
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::sin;
using std::cos;
using std::exp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::sin;
using std::cos;
using std::exp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -(sin_x * sinh_y));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::sin;
using std::cos;
using std::exp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_x = sin (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_x = cos (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_yp = exp (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_ym = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_yp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_y = (exp_yp - exp_ym) / 2;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_y = (exp_yp + exp_ym) / 2;
return ( complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(sin_x * cosh_y, cos_x * sinh_y)
/ complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_x * cosh_y, -sin_x * sinh_y));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asin(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
return -boost::math::cstdfloat::detail::multiply_by_i(std::log(boost::math::cstdfloat::detail::multiply_by_i(x) + std::sqrt(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - (x * x))));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acos(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
return boost::math::constants::half_pi<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>() - std::asin(x);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atan(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> izz = boost::math::cstdfloat::detail::multiply_by_i(x);
return boost::math::cstdfloat::detail::multiply_by_i(std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - izz) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + izz)) / 2;
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> exp(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::exp;
return std::polar(exp(x.real()), x.imag());
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::atan2;
using std::log;
const bool re_isneg = (x.real() < 0);
const bool re_isnan = (x.real() != x.real());
const bool re_isinf = ((!re_isneg) ? bool(+x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
const bool im_isneg = (x.imag() < 0);
const bool im_isnan = (x.imag() != x.imag());
const bool im_isinf = ((!im_isneg) ? bool(+x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
if(re_isnan || im_isnan) { return x; }
if(re_isinf || im_isinf)
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0.0));
}
const bool re_iszero = ((re_isneg || (x.real() > 0)) == false);
if(re_iszero)
{
const bool im_iszero = ((im_isneg || (x.imag() > 0)) == false);
if(im_iszero)
{
return std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
-std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0.0)
);
}
else
{
if(im_isneg == false)
{
return std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
log(x.imag()),
boost::math::constants::half_pi<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>()
);
}
else
{
return std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
log(-x.imag()),
-boost::math::constants::half_pi<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>()
);
}
}
}
else
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(log(std::norm(x)) / 2, atan2(x.imag(), x.real()));
}
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> log10(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
return std::log(x) / boost::math::constants::ln_ten<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>();
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
int p)
{
const bool re_isneg = (x.real() < 0);
const bool re_isnan = (x.real() != x.real());
const bool re_isinf = ((!re_isneg) ? bool(+x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-x.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
const bool im_isneg = (x.imag() < 0);
const bool im_isnan = (x.imag() != x.imag());
const bool im_isinf = ((!im_isneg) ? bool(+x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-x.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
if(re_isnan || im_isnan) { return x; }
if(re_isinf || im_isinf)
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN());
}
if(p < 0)
{
if(std::abs(x) < (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::min)())
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
}
else
{
return BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / std::pow(x, -p);
}
}
if(p == 0)
{
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1));
}
else
{
if(p == 1) { return x; }
if(std::abs(x) > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE re = (re_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
: +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE im = (im_isneg ? -std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
: +std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity());
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(re, im);
}
if (p == 2) { return (x * x); }
else if(p == 3) { return ((x * x) * x); }
else if(p == 4) { const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> x2 = (x * x); return (x2 * x2); }
else
{
// The variable xn stores the binary powers of x.
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> result(((p % 2) != 0) ? x : complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> xn (x);
int p2 = p;
while((p2 /= 2) != 0)
{
// Square xn for each binary power.
xn *= xn;
const bool has_binary_power = ((p2 % 2) != 0);
if(has_binary_power)
{
// Multiply the result with each binary power contained in the exponent.
result *= xn;
}
}
return result;
}
}
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& a)
{
const bool x_im_isneg = (x.imag() < 0);
const bool x_im_iszero = ((x_im_isneg || (x.imag() > 0)) == false);
if(x_im_iszero)
{
using std::pow;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE pxa = pow(x.real(), a);
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(pxa, BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0));
}
else
{
return std::exp(a * std::log(x));
}
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x,
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
{
const bool x_im_isneg = (x.imag() < 0);
const bool x_im_iszero = ((x_im_isneg || (x.imag() > 0)) == false);
if(x_im_iszero)
{
using std::pow;
return pow(x.real(), a);
}
else
{
return std::exp(a * std::log(x));
}
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> pow(const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE& x,
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& a)
{
const bool x_isneg = (x < 0);
const bool x_isnan = (x != x);
const bool x_isinf = ((!x_isneg) ? bool(+x > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-x > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
const bool a_re_isneg = (a.real() < 0);
const bool a_re_isnan = (a.real() != a.real());
const bool a_re_isinf = ((!a_re_isneg) ? bool(+a.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-a.real() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
const bool a_im_isneg = (a.imag() < 0);
const bool a_im_isnan = (a.imag() != a.imag());
const bool a_im_isinf = ((!a_im_isneg) ? bool(+a.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)())
: bool(-a.imag() > (std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::max)()));
const bool args_is_nan = (x_isnan || a_re_isnan || a_im_isnan);
const bool a_is_finite = (!(a_re_isnan || a_re_isinf || a_im_isnan || a_im_isinf));
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> result;
if(args_is_nan)
{
result =
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN()
);
}
else if(x_isinf)
{
if(a_is_finite)
{
result =
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::infinity()
);
}
else
{
result =
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN()
);
}
}
else if(x > 0)
{
result = std::exp(a * std::log(x));
}
else if(x < 0)
{
using std::acos;
using std::log;
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
cpx_lg_x
(
log(-x),
acos(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(-1))
);
result = std::exp(a * cpx_lg_x);
}
else
{
if(a_is_finite)
{
result =
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0),
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(0)
);
}
else
{
result =
complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>
(
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN(),
std::numeric_limits<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>::quiet_NaN()
);
}
}
return result;
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> sinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::sin;
using std::cos;
using std::exp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * sinh_x, cosh_x * sin_y);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> cosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
using std::sin;
using std::cos;
using std::exp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sin_y = sin (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cos_y = cos (x.imag());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xp = exp (x.real());
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE exp_xm = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / exp_xp;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE sinh_x = (exp_xp - exp_xm) / 2;
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE cosh_x = (exp_xp + exp_xm) / 2;
return complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(cos_y * cosh_x, sin_y * sinh_x);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> tanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_plus = std::exp(x);
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> ex_minus = BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) / ex_plus;
return (ex_plus - ex_minus) / (ex_plus + ex_minus);
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> asinh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
return std::log(x + std::sqrt((x * x) + BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1)));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> acosh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
const BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE my_one(1);
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zp(x.real() + my_one, x.imag());
const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> zm(x.real() - my_one, x.imag());
return std::log(x + (zp * std::sqrt(zm / zp)));
}
inline complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE> atanh(const complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
return (std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) + x) - std::log(BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE(1) - x)) / 2.0;
}
template<class char_type, class traits_type>
inline std::basic_ostream<char_type, traits_type>& operator<<(std::basic_ostream<char_type, traits_type>& os, const std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
std::basic_ostringstream<char_type, traits_type> ostr;
ostr.flags(os.flags());
ostr.imbue(os.getloc());
ostr.precision(os.precision());
ostr << char_type('(')
<< x.real()
<< char_type(',')
<< x.imag()
<< char_type(')');
return (os << ostr.str());
}
template<class char_type, class traits_type>
inline std::basic_istream<char_type, traits_type>& operator>>(std::basic_istream<char_type, traits_type>& is, std::complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>& x)
{
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE rx;
BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE ix;
char_type the_char;
static_cast<void>(is >> the_char);
if(the_char == static_cast<char_type>('('))
{
static_cast<void>(is >> rx >> the_char);
if(the_char == static_cast<char_type>(','))
{
static_cast<void>(is >> ix >> the_char);
if(the_char == static_cast<char_type>(')'))
{
x = complex<BOOST_CSTDFLOAT_EXTENDED_COMPLEX_FLOAT_TYPE>(rx, ix);
}
else
{
is.setstate(ios_base::failbit);
}
}
else if(the_char == static_cast<char_type>(')'))
{
x = rx;
}
else
{
is.setstate(ios_base::failbit);
}
}
else
{
static_cast<void>(is.putback(the_char));
static_cast<void>(is >> rx);
x = rx;
}
return is;
}
} // namespace std
#endif // BOOST_MATH_CSTDFLOAT_COMPLEX_STD_2014_02_15_HPP_