boost/math/quadrature/exp_sinh.hpp
// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
/*
* This class performs exp-sinh quadrature on half infinite intervals.
*
* References:
*
* 1) Tanaka, Ken'ichiro, et al. "Function classes for double exponential integration formulas." Numerische Mathematik 111.4 (2009): 631-655.
*/
#ifndef BOOST_MATH_QUADRATURE_EXP_SINH_HPP
#define BOOST_MATH_QUADRATURE_EXP_SINH_HPP
#include <boost/math/tools/config.hpp>
#include <boost/math/quadrature/detail/exp_sinh_detail.hpp>
#ifndef BOOST_MATH_HAS_NVRTC
#include <cmath>
#include <limits>
#include <memory>
#include <string>
namespace boost{ namespace math{ namespace quadrature {
template<class Real, class Policy = policies::policy<> >
class exp_sinh
{
public:
exp_sinh(size_t max_refinements = 9)
: m_imp(std::make_shared<detail::exp_sinh_detail<Real, Policy>>(max_refinements)) {}
template<class F>
auto integrate(const F& f, Real a, Real b, Real tol = boost::math::tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>()));
template<class F>
auto integrate(const F& f, Real tol = boost::math::tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>()));
private:
std::shared_ptr<detail::exp_sinh_detail<Real, Policy>> m_imp;
};
template<class Real, class Policy>
template<class F>
auto exp_sinh<Real, Policy>::integrate(const F& f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>()))
{
typedef decltype(f(a)) K;
static_assert(!std::is_integral<K>::value,
"The return type cannot be integral, it must be either a real or complex floating point type.");
using std::abs;
using boost::math::constants::half;
using boost::math::quadrature::detail::exp_sinh_detail;
static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate";
// Neither limit may be a NaN:
if((boost::math::isnan)(a) || (boost::math::isnan)(b))
{
return static_cast<K>(policies::raise_domain_error(function, "NaN supplied as one limit of integration - sorry I don't know what to do", a, Policy()));
}
// Right limit is infinite:
if ((boost::math::isfinite)(a) && (b >= boost::math::tools::max_value<Real>()))
{
// If a = 0, don't use an additional level of indirection:
if (a == static_cast<Real>(0))
{
return m_imp->integrate(f, error, L1, function, tolerance, levels);
}
const auto u = [&](Real t)->K { return f(t + a); };
return m_imp->integrate(u, error, L1, function, tolerance, levels);
}
if ((boost::math::isfinite)(b) && a <= -boost::math::tools::max_value<Real>())
{
const auto u = [&](Real t)->K { return f(b-t);};
return m_imp->integrate(u, error, L1, function, tolerance, levels);
}
// Infinite limits:
if ((a <= -boost::math::tools::max_value<Real>()) && (b >= boost::math::tools::max_value<Real>()))
{
return static_cast<K>(policies::raise_domain_error(function, "Use sinh_sinh quadrature for integration over the whole real line; exp_sinh is for half infinite integrals.", a, Policy()));
}
// If we get to here then both ends must necessarily be finite:
return static_cast<K>(policies::raise_domain_error(function, "Use tanh_sinh quadrature for integration over finite domains; exp_sinh is for half infinite integrals.", a, Policy()));
}
template<class Real, class Policy>
template<class F>
auto exp_sinh<Real, Policy>::integrate(const F& f, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>()))
{
static const char* function = "boost::math::quadrature::exp_sinh<%1%>::integrate";
using std::abs;
if (abs(tolerance) > 1) {
return policies::raise_domain_error(function, "The tolerance provided (%1%) is unusually large; did you confuse it with a domain bound?", tolerance, Policy());
}
return m_imp->integrate(f, error, L1, function, tolerance, levels);
}
}}}
#endif // BOOST_MATH_HAS_NVRTC
#ifdef BOOST_MATH_ENABLE_CUDA
#include <boost/math/tools/type_traits.hpp>
#include <boost/math/tools/cstdint.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/constants/constants.hpp>
namespace boost {
namespace math {
namespace quadrature {
template <class F, class Real, class Policy = policies::policy<> >
__device__ auto exp_sinh_integrate(const F& f, Real a, Real b, Real tolerance, Real* error, Real* L1, boost::math::size_t* levels)
{
BOOST_MATH_STD_USING
using K = decltype(f(a));
static_assert(!boost::math::is_integral<K>::value,
"The return type cannot be integral, it must be either a real or complex floating point type.");
constexpr auto function = "boost::math::quadrature::exp_sinh<%1%>::integrate";
// Neither limit may be a NaN:
if((boost::math::isnan)(a) || (boost::math::isnan)(b))
{
return static_cast<K>(policies::raise_domain_error(function, "NaN supplied as one limit of integration - sorry I don't know what to do", a, Policy()));
}
// Right limit is infinite:
if ((boost::math::isfinite)(a) && (b >= boost::math::tools::max_value<Real>()))
{
// If a = 0, don't use an additional level of indirection:
if (a == static_cast<Real>(0))
{
return detail::exp_sinh_integrate_impl(f, tolerance, error, L1, levels);
}
const auto u = [&](Real t)->K { return f(t + a); };
return detail::exp_sinh_integrate_impl(u, tolerance, error, L1, levels);
}
if ((boost::math::isfinite)(b) && a <= -boost::math::tools::max_value<Real>())
{
const auto u = [&](Real t)->K { return f(b-t);};
return detail::exp_sinh_integrate_impl(u, tolerance, error, L1, levels);
}
// Infinite limits:
if ((a <= -boost::math::tools::max_value<Real>()) && (b >= boost::math::tools::max_value<Real>()))
{
return static_cast<K>(policies::raise_domain_error(function, "Use sinh_sinh quadrature for integration over the whole real line; exp_sinh is for half infinite integrals.", a, Policy()));
}
// If we get to here then both ends must necessarily be finite:
return static_cast<K>(policies::raise_domain_error(function, "Use tanh_sinh quadrature for integration over finite domains; exp_sinh is for half infinite integrals.", a, Policy()));
}
template <class F, class Real, class Policy = policies::policy<> >
__device__ auto exp_sinh_integrate(const F& f, Real tolerance, Real* error, Real* L1, boost::math::size_t* levels)
{
BOOST_MATH_STD_USING
constexpr auto function = "boost::math::quadrature::exp_sinh<%1%>::integrate";
if (abs(tolerance) > 1) {
return policies::raise_domain_error(function, "The tolerance provided (%1%) is unusually large; did you confuse it with a domain bound?", tolerance, Policy());
}
return detail::exp_sinh_integrate_impl(f, tolerance, error, L1, levels);
}
} // namespace quadrature
} // namespace math
} // namespace boost
#endif // BOOST_MATH_ENABLE_CUDA
#endif // BOOST_MATH_QUADRATURE_EXP_SINH_HPP