boost/math/special_functions/detail/bessel_jy_derivatives_series.hpp
// Copyright (c) 2013 Anton Bikineev
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_BESSEL_JY_DERIVATIVES_SERIES_HPP
#define BOOST_MATH_BESSEL_JY_DERIVATIVES_SERIES_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <cmath>
#include <cstdint>
namespace boost{ namespace math{ namespace detail{
template <class T, class Policy>
struct bessel_j_derivative_small_z_series_term
{
typedef T result_type;
bessel_j_derivative_small_z_series_term(T v_, T x)
: N(0), v(v_), term(1), mult(x / 2)
{
mult *= -mult;
// iterate if v == 0; otherwise result of
// first term is 0 and tools::sum_series stops
if (v == 0)
iterate();
}
T operator()()
{
T r = term * (v + 2 * N);
iterate();
return r;
}
private:
void iterate()
{
++N;
term *= mult / (N * (N + v));
}
unsigned N;
T v;
T term;
T mult;
};
//
// Series evaluation for BesselJ'(v, z) as z -> 0.
// It's derivative of http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/06/01/04/01/01/0003/
// Converges rapidly for all z << v.
//
template <class T, class Policy>
inline T bessel_j_derivative_small_z_series(T v, T x, const Policy& pol)
{
BOOST_MATH_STD_USING
T prefix;
if (v < boost::math::max_factorial<T>::value)
{
prefix = pow(x / 2, v - 1) / 2 / boost::math::tgamma(v + 1, pol);
}
else
{
prefix = (v - 1) * log(x / 2) - constants::ln_two<T>() - boost::math::lgamma(v + 1, pol);
prefix = exp(prefix);
}
if (0 == prefix)
return prefix;
bessel_j_derivative_small_z_series_term<T, Policy> s(v, x);
std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
boost::math::policies::check_series_iterations<T>("boost::math::bessel_j_derivative_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
return prefix * result;
}
template <class T, class Policy>
struct bessel_y_derivative_small_z_series_term_a
{
typedef T result_type;
bessel_y_derivative_small_z_series_term_a(T v_, T x)
: N(0), v(v_)
{
mult = x / 2;
mult *= -mult;
term = 1;
}
T operator()()
{
T r = term * (-v + 2 * N);
++N;
term *= mult / (N * (N - v));
return r;
}
private:
unsigned N;
T v;
T mult;
T term;
};
template <class T, class Policy>
struct bessel_y_derivative_small_z_series_term_b
{
typedef T result_type;
bessel_y_derivative_small_z_series_term_b(T v_, T x)
: N(0), v(v_)
{
mult = x / 2;
mult *= -mult;
term = 1;
}
T operator()()
{
T r = term * (v + 2 * N);
++N;
term *= mult / (N * (N + v));
return r;
}
private:
unsigned N;
T v;
T mult;
T term;
};
//
// Series form for BesselY' as z -> 0,
// It's derivative of http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/01/0003/
// This series is only useful when the second term is small compared to the first
// otherwise we get catastrophic cancellation errors.
//
// Approximating tgamma(v) by v^v, and assuming |tgamma(-z)| < eps we end up requiring:
// eps/2 * v^v(x/2)^-v > (x/2)^v or log(eps/2) > v log((x/2)^2/v)
//
template <class T, class Policy>
inline T bessel_y_derivative_small_z_series(T v, T x, const Policy& pol)
{
BOOST_MATH_STD_USING
static const char* function = "bessel_y_derivative_small_z_series<%1%>(%1%,%1%)";
T prefix;
T gam;
T p = log(x / 2);
T scale = 1;
bool need_logs = (v >= boost::math::max_factorial<T>::value) || (boost::math::tools::log_max_value<T>() / v < fabs(p));
if (!need_logs)
{
gam = boost::math::tgamma(v, pol);
p = pow(x / 2, v + 1) * 2;
if (boost::math::tools::max_value<T>() * p < gam)
{
scale /= gam;
gam = 1;
if (boost::math::tools::max_value<T>() * p < gam)
{
// This term will overflow to -INF, when combined with the series below it becomes +INF:
return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
}
}
prefix = -gam / (boost::math::constants::pi<T>() * p);
}
else
{
gam = boost::math::lgamma(v, pol);
p = (v + 1) * p + constants::ln_two<T>();
prefix = gam - log(boost::math::constants::pi<T>()) - p;
if (boost::math::tools::log_max_value<T>() < prefix)
{
prefix -= log(boost::math::tools::max_value<T>() / 4);
scale /= (boost::math::tools::max_value<T>() / 4);
if (boost::math::tools::log_max_value<T>() < prefix)
{
return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
}
}
prefix = -exp(prefix);
}
bessel_y_derivative_small_z_series_term_a<T, Policy> s(v, x);
std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
boost::math::policies::check_series_iterations<T>("boost::math::bessel_y_derivative_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
result *= prefix;
p = pow(x / 2, v - 1) / 2;
if (!need_logs)
{
prefix = boost::math::tgamma(-v, pol) * boost::math::cos_pi(v, pol) * p / boost::math::constants::pi<T>();
}
else
{
int sgn {};
prefix = boost::math::lgamma(-v, &sgn, pol) + (v - 1) * log(x / 2) - constants::ln_two<T>();
prefix = exp(prefix) * sgn / boost::math::constants::pi<T>();
}
bessel_y_derivative_small_z_series_term_b<T, Policy> s2(v, x);
max_iter = boost::math::policies::get_max_series_iterations<Policy>();
T b = boost::math::tools::sum_series(s2, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
result += scale * prefix * b;
if(scale * tools::max_value<T>() < result)
return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
return result / scale;
}
// Calculating of BesselY'(v,x) with small x (x < epsilon) and integer x using derivatives
// of formulas in http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/02/
// seems to lose precision. Instead using linear combination of regular Bessel is preferred.
}}} // namespaces
#endif // BOOST_MATH_BESSEL_JY_DERIVATIVES_SERIES_HPP