boost/math/special_functions/detail/hypergeometric_series.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2014 Anton Bikineev
// Copyright 2014 Christopher Kormanyos
// Copyright 2014 John Maddock
// Copyright 2014 Paul Bristow
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_MATH_DETAIL_HYPERGEOMETRIC_SERIES_HPP
#define BOOST_MATH_DETAIL_HYPERGEOMETRIC_SERIES_HPP
#include <cmath>
#include <cstdint>
#include <boost/math/tools/series.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/math/policies/error_handling.hpp>
namespace boost { namespace math { namespace detail {
// primary template for term of Taylor series
template <class T, unsigned p, unsigned q>
struct hypergeometric_pFq_generic_series_term;
// partial specialization for 0F1
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 0u, 1u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& b, const T& z)
: n(0), term(1), b(b), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= ((1 / ((b + n) * (n + 1))) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T b, z;
};
// partial specialization for 1F0
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 1u, 0u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& a, const T& z)
: n(0), term(1), a(a), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= (((a + n) / (n + 1)) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T a, z;
};
// partial specialization for 1F1
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 1u, 1u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& a, const T& b, const T& z)
: n(0), term(1), a(a), b(b), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= (((a + n) / ((b + n) * (n + 1))) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T a, b, z;
};
// partial specialization for 1F2
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 1u, 2u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& a, const T& b1, const T& b2, const T& z)
: n(0), term(1), a(a), b1(b1), b2(b2), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= (((a + n) / ((b1 + n) * (b2 + n) * (n + 1))) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T a, b1, b2, z;
};
// partial specialization for 2F0
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 2u, 0u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& a1, const T& a2, const T& z)
: n(0), term(1), a1(a1), a2(a2), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= (((a1 + n) * (a2 + n) / (n + 1)) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T a1, a2, z;
};
// partial specialization for 2F1
template <class T>
struct hypergeometric_pFq_generic_series_term<T, 2u, 1u>
{
typedef T result_type;
hypergeometric_pFq_generic_series_term(const T& a1, const T& a2, const T& b, const T& z)
: n(0), term(1), a1(a1), a2(a2), b(b), z(z)
{
}
T operator()()
{
BOOST_MATH_STD_USING
const T r = term;
term *= (((a1 + n) * (a2 + n) / ((b + n) * (n + 1))) * z);
++n;
return r;
}
private:
unsigned n;
T term;
const T a1, a2, b, z;
};
// we don't need to define extra check and make a polinom from
// series, when p(i) and q(i) are negative integers and p(i) >= q(i)
// as described in functions.wolfram.alpha, because we always
// stop summation when result (in this case numerator) is zero.
template <class T, unsigned p, unsigned q, class Policy>
inline T sum_pFq_series(detail::hypergeometric_pFq_generic_series_term<T, p, q>& term, const Policy& pol)
{
BOOST_MATH_STD_USING
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
const T result = boost::math::tools::sum_series(term, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
policies::check_series_iterations<T>("boost::math::hypergeometric_pFq_generic_series<%1%>(%1%,%1%,%1%)", max_iter, pol);
return result;
}
template <class T, class Policy>
inline T hypergeometric_0F1_generic_series(const T& b, const T& z, const Policy& pol)
{
detail::hypergeometric_pFq_generic_series_term<T, 0u, 1u> s(b, z);
return detail::sum_pFq_series(s, pol);
}
template <class T, class Policy>
inline T hypergeometric_1F0_generic_series(const T& a, const T& z, const Policy& pol)
{
detail::hypergeometric_pFq_generic_series_term<T, 1u, 0u> s(a, z);
return detail::sum_pFq_series(s, pol);
}
template <class T, class Policy>
inline T log_pochhammer(T z, unsigned n, const Policy pol, int* s = nullptr)
{
BOOST_MATH_STD_USING
#if 0
if (z < 0)
{
if (n < -z)
{
if(s)
*s = (n & 1 ? -1 : 1);
return log_pochhammer(T(-z + (1 - (int)n)), n, pol);
}
else
{
int cross = itrunc(ceil(-z));
return log_pochhammer(T(-z + (1 - cross)), cross, pol, s) + log_pochhammer(T(cross + z), n - cross, pol);
}
}
else
#endif
{
if (z + n < 0)
{
T r = log_pochhammer(T(-z - n + 1), n, pol, s);
if (s)
*s *= (n & 1 ? -1 : 1);
return r;
}
int s1, s2;
auto r = static_cast<T>(boost::math::lgamma(T(z + n), &s1, pol) - boost::math::lgamma(z, &s2, pol));
if(s)
*s = s1 * s2;
return r;
}
}
template <class T, class Policy>
inline T hypergeometric_1F1_generic_series(const T& a, const T& b, const T& z, const Policy& pol, long long& log_scaling, const char* function)
{
BOOST_MATH_STD_USING
T sum(0), term(1), upper_limit(sqrt(boost::math::tools::max_value<T>())), diff;
T lower_limit(1 / upper_limit);
unsigned n = 0;
long long log_scaling_factor = lltrunc(boost::math::tools::log_max_value<T>()) - 2;
T scaling_factor = exp(T(log_scaling_factor));
T term_m1 = 0;
long long local_scaling = 0;
//
// When a is very small, then (a+n)/n => 1 faster than
// z / (b+n) => 1, as a result the series starts off
// converging, then at some unspecified time very gradually
// starts to diverge, potentially resulting in some very large
// values being missed. As a result we need a check for small
// a in the convergence criteria. Note that this issue occurs
// even when all the terms are positive.
//
bool small_a = fabs(a) < 0.25;
unsigned summit_location = 0;
bool have_minima = false;
T sq = 4 * a * z + b * b - 2 * b * z + z * z;
if (sq >= 0)
{
T t = (-sqrt(sq) - b + z) / 2;
if (t > 1) // Don't worry about a minima between 0 and 1.
have_minima = true;
t = (sqrt(sq) - b + z) / 2;
if (t > 0)
summit_location = itrunc(t);
}
if (summit_location > boost::math::policies::get_max_series_iterations<Policy>() / 4)
{
//
// Skip forward to the location of the largest term in the series and
// evaluate outwards from there:
//
int s1, s2;
term = log_pochhammer(a, summit_location, pol, &s1) + summit_location * log(z) - log_pochhammer(b, summit_location, pol, &s2) - lgamma(T(summit_location + 1), pol);
//std::cout << term << " " << log_pochhammer(boost::multiprecision::mpfr_float(a), summit_location, pol, &s1) + summit_location * log(boost::multiprecision::mpfr_float(z)) - log_pochhammer(boost::multiprecision::mpfr_float(b), summit_location, pol, &s2) - lgamma(boost::multiprecision::mpfr_float(summit_location + 1), pol) << std::endl;
local_scaling = lltrunc(term);
log_scaling += local_scaling;
term = s1 * s2 * exp(term - local_scaling);
//std::cout << term << " " << exp(log_pochhammer(boost::multiprecision::mpfr_float(a), summit_location, pol, &s1) + summit_location * log(boost::multiprecision::mpfr_float(z)) - log_pochhammer(boost::multiprecision::mpfr_float(b), summit_location, pol, &s2) - lgamma(boost::multiprecision::mpfr_float(summit_location + 1), pol) - local_scaling) << std::endl;
n = summit_location;
}
else
summit_location = 0;
T saved_term = term;
long long saved_scale = local_scaling;
do
{
sum += term;
//std::cout << n << " " << term * exp(boost::multiprecision::mpfr_float(local_scaling)) << " " << rising_factorial(boost::multiprecision::mpfr_float(a), n) * pow(boost::multiprecision::mpfr_float(z), n) / (rising_factorial(boost::multiprecision::mpfr_float(b), n) * factorial<boost::multiprecision::mpfr_float>(n)) << std::endl;
if (fabs(sum) >= upper_limit)
{
sum /= scaling_factor;
term /= scaling_factor;
log_scaling += log_scaling_factor;
local_scaling += log_scaling_factor;
}
if (fabs(sum) < lower_limit)
{
sum *= scaling_factor;
term *= scaling_factor;
log_scaling -= log_scaling_factor;
local_scaling -= log_scaling_factor;
}
term_m1 = term;
term *= (((a + n) / ((b + n) * (n + 1))) * z);
if (n - summit_location > boost::math::policies::get_max_series_iterations<Policy>())
return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
++n;
diff = fabs(term / sum);
} while ((diff > boost::math::policies::get_epsilon<T, Policy>()) || (fabs(term_m1) < fabs(term)) || (small_a && n < 10));
//
// See if we need to go backwards as well:
//
if (summit_location)
{
//
// Backup state:
//
term = saved_term * exp(T(local_scaling - saved_scale));
n = summit_location;
term *= (b + (n - 1)) * n / ((a + (n - 1)) * z);
--n;
do
{
sum += term;
//std::cout << n << " " << term * exp(boost::multiprecision::mpfr_float(local_scaling)) << " " << rising_factorial(boost::multiprecision::mpfr_float(a), n) * pow(boost::multiprecision::mpfr_float(z), n) / (rising_factorial(boost::multiprecision::mpfr_float(b), n) * factorial<boost::multiprecision::mpfr_float>(n)) << std::endl;
if (n == 0)
break;
if (fabs(sum) >= upper_limit)
{
sum /= scaling_factor;
term /= scaling_factor;
log_scaling += log_scaling_factor;
local_scaling += log_scaling_factor;
}
if (fabs(sum) < lower_limit)
{
sum *= scaling_factor;
term *= scaling_factor;
log_scaling -= log_scaling_factor;
local_scaling -= log_scaling_factor;
}
term_m1 = term;
term *= (b + (n - 1)) * n / ((a + (n - 1)) * z);
if (summit_location - n > boost::math::policies::get_max_series_iterations<Policy>())
return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
--n;
diff = fabs(term / sum);
} while ((diff > boost::math::policies::get_epsilon<T, Policy>()) || (fabs(term_m1) < fabs(term)));
}
if (have_minima && n && summit_location)
{
//
// There are a few terms starting at n == 0 which
// haven't been accounted for yet...
//
unsigned backstop = n;
n = 0;
term = exp(T(-local_scaling));
do
{
sum += term;
//std::cout << n << " " << term << " " << sum << std::endl;
if (fabs(sum) >= upper_limit)
{
sum /= scaling_factor;
term /= scaling_factor;
log_scaling += log_scaling_factor;
}
if (fabs(sum) < lower_limit)
{
sum *= scaling_factor;
term *= scaling_factor;
log_scaling -= log_scaling_factor;
}
//term_m1 = term;
term *= (((a + n) / ((b + n) * (n + 1))) * z);
if (n > boost::math::policies::get_max_series_iterations<Policy>())
return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
if (++n == backstop)
break; // we've caught up with ourselves.
diff = fabs(term / sum);
} while ((diff > boost::math::policies::get_epsilon<T, Policy>())/* || (fabs(term_m1) < fabs(term))*/);
}
//std::cout << sum << std::endl;
return sum;
}
template <class T, class Policy>
inline T hypergeometric_1F2_generic_series(const T& a, const T& b1, const T& b2, const T& z, const Policy& pol)
{
detail::hypergeometric_pFq_generic_series_term<T, 1u, 2u> s(a, b1, b2, z);
return detail::sum_pFq_series(s, pol);
}
template <class T, class Policy>
inline T hypergeometric_2F0_generic_series(const T& a1, const T& a2, const T& z, const Policy& pol)
{
detail::hypergeometric_pFq_generic_series_term<T, 2u, 0u> s(a1, a2, z);
return detail::sum_pFq_series(s, pol);
}
template <class T, class Policy>
inline T hypergeometric_2F1_generic_series(const T& a1, const T& a2, const T& b, const T& z, const Policy& pol)
{
detail::hypergeometric_pFq_generic_series_term<T, 2u, 1u> s(a1, a2, b, z);
return detail::sum_pFq_series(s, pol);
}
} } } // namespaces
#endif // BOOST_MATH_DETAIL_HYPERGEOMETRIC_SERIES_HPP