boost/unordered/concurrent_node_set.hpp
/* Fast open-addressing, node-based concurrent hashset.
*
* Copyright 2023 Christian Mazakas.
* Copyright 2023-2024 Joaquin M Lopez Munoz.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See https://www.boost.org/libs/unordered for library home page.
*/
#ifndef BOOST_UNORDERED_CONCURRENT_NODE_SET_HPP
#define BOOST_UNORDERED_CONCURRENT_NODE_SET_HPP
#include <boost/unordered/concurrent_node_set_fwd.hpp>
#include <boost/unordered/detail/concurrent_static_asserts.hpp>
#include <boost/unordered/detail/foa/concurrent_table.hpp>
#include <boost/unordered/detail/foa/element_type.hpp>
#include <boost/unordered/detail/foa/node_set_handle.hpp>
#include <boost/unordered/detail/foa/node_set_types.hpp>
#include <boost/unordered/detail/type_traits.hpp>
#include <boost/unordered/unordered_node_set_fwd.hpp>
#include <boost/container_hash/hash.hpp>
#include <boost/core/allocator_access.hpp>
#include <boost/core/serialization.hpp>
#include <utility>
namespace boost {
namespace unordered {
template <class Key, class Hash, class Pred, class Allocator>
class concurrent_node_set
{
private:
template <class Key2, class Hash2, class Pred2, class Allocator2>
friend class concurrent_node_set;
template <class Key2, class Hash2, class Pred2, class Allocator2>
friend class unordered_node_set;
using type_policy = detail::foa::node_set_types<Key,
typename boost::allocator_void_pointer<Allocator>::type>;
using table_type =
detail::foa::concurrent_table<type_policy, Hash, Pred, Allocator>;
table_type table_;
template <class K, class H, class KE, class A>
bool friend operator==(concurrent_node_set<K, H, KE, A> const& lhs,
concurrent_node_set<K, H, KE, A> const& rhs);
template <class K, class H, class KE, class A, class Predicate>
friend typename concurrent_node_set<K, H, KE, A>::size_type erase_if(
concurrent_node_set<K, H, KE, A>& set, Predicate pred);
template<class Archive, class K, class H, class KE, class A>
friend void serialize(
Archive& ar, concurrent_node_set<K, H, KE, A>& c,
unsigned int version);
public:
using key_type = Key;
using value_type = typename type_policy::value_type;
using init_type = typename type_policy::init_type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using hasher = typename boost::unordered::detail::type_identity<Hash>::type;
using key_equal = typename boost::unordered::detail::type_identity<Pred>::type;
using allocator_type = typename boost::unordered::detail::type_identity<Allocator>::type;
using reference = value_type&;
using const_reference = value_type const&;
using pointer = typename boost::allocator_pointer<allocator_type>::type;
using const_pointer =
typename boost::allocator_const_pointer<allocator_type>::type;
using node_type = detail::foa::node_set_handle<type_policy,
typename boost::allocator_rebind<Allocator,
typename type_policy::value_type>::type>;
using insert_return_type =
detail::foa::iteratorless_insert_return_type<node_type>;
static constexpr size_type bulk_visit_size = table_type::bulk_visit_size;
#if defined(BOOST_UNORDERED_ENABLE_STATS)
using stats = typename table_type::stats;
#endif
concurrent_node_set()
: concurrent_node_set(detail::foa::default_bucket_count)
{
}
explicit concurrent_node_set(size_type n, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
: table_(n, hf, eql, a)
{
}
template <class InputIterator>
concurrent_node_set(InputIterator f, InputIterator l,
size_type n = detail::foa::default_bucket_count,
const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
: table_(n, hf, eql, a)
{
this->insert(f, l);
}
concurrent_node_set(concurrent_node_set const& rhs)
: table_(rhs.table_,
boost::allocator_select_on_container_copy_construction(
rhs.get_allocator()))
{
}
concurrent_node_set(concurrent_node_set&& rhs)
: table_(std::move(rhs.table_))
{
}
template <class InputIterator>
concurrent_node_set(
InputIterator f, InputIterator l, allocator_type const& a)
: concurrent_node_set(f, l, 0, hasher(), key_equal(), a)
{
}
explicit concurrent_node_set(allocator_type const& a)
: table_(detail::foa::default_bucket_count, hasher(), key_equal(), a)
{
}
concurrent_node_set(
concurrent_node_set const& rhs, allocator_type const& a)
: table_(rhs.table_, a)
{
}
concurrent_node_set(concurrent_node_set&& rhs, allocator_type const& a)
: table_(std::move(rhs.table_), a)
{
}
concurrent_node_set(std::initializer_list<value_type> il,
size_type n = detail::foa::default_bucket_count,
const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
: concurrent_node_set(n, hf, eql, a)
{
this->insert(il.begin(), il.end());
}
concurrent_node_set(size_type n, const allocator_type& a)
: concurrent_node_set(n, hasher(), key_equal(), a)
{
}
concurrent_node_set(
size_type n, const hasher& hf, const allocator_type& a)
: concurrent_node_set(n, hf, key_equal(), a)
{
}
template <typename InputIterator>
concurrent_node_set(
InputIterator f, InputIterator l, size_type n, const allocator_type& a)
: concurrent_node_set(f, l, n, hasher(), key_equal(), a)
{
}
template <typename InputIterator>
concurrent_node_set(InputIterator f, InputIterator l, size_type n,
const hasher& hf, const allocator_type& a)
: concurrent_node_set(f, l, n, hf, key_equal(), a)
{
}
concurrent_node_set(
std::initializer_list<value_type> il, const allocator_type& a)
: concurrent_node_set(
il, detail::foa::default_bucket_count, hasher(), key_equal(), a)
{
}
concurrent_node_set(std::initializer_list<value_type> il, size_type n,
const allocator_type& a)
: concurrent_node_set(il, n, hasher(), key_equal(), a)
{
}
concurrent_node_set(std::initializer_list<value_type> il, size_type n,
const hasher& hf, const allocator_type& a)
: concurrent_node_set(il, n, hf, key_equal(), a)
{
}
template <bool avoid_explicit_instantiation = true>
concurrent_node_set(
unordered_node_set<Key, Hash, Pred, Allocator>&& other)
: table_(std::move(other.table_))
{
}
~concurrent_node_set() = default;
concurrent_node_set& operator=(concurrent_node_set const& rhs)
{
table_ = rhs.table_;
return *this;
}
concurrent_node_set& operator=(concurrent_node_set&& rhs)
noexcept(boost::allocator_is_always_equal<Allocator>::type::value ||
boost::allocator_propagate_on_container_move_assignment<
Allocator>::type::value)
{
table_ = std::move(rhs.table_);
return *this;
}
concurrent_node_set& operator=(std::initializer_list<value_type> ilist)
{
table_ = ilist;
return *this;
}
/// Capacity
///
size_type size() const noexcept { return table_.size(); }
size_type max_size() const noexcept { return table_.max_size(); }
BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept
{
return size() == 0;
}
template <class F>
BOOST_FORCEINLINE size_type visit(key_type const& k, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(k, f);
}
template <class F>
BOOST_FORCEINLINE size_type visit(key_type const& k, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(k, f);
}
template <class F>
BOOST_FORCEINLINE size_type cvisit(key_type const& k, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(k, f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, size_type>::type
visit(K&& k, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(std::forward<K>(k), f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, size_type>::type
visit(K&& k, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(std::forward<K>(k), f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, size_type>::type
cvisit(K&& k, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(std::forward<K>(k), f);
}
template<class FwdIterator, class F>
BOOST_FORCEINLINE
size_t visit(FwdIterator first, FwdIterator last, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_BULK_VISIT_ITERATOR(FwdIterator)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(first, last, f);
}
template<class FwdIterator, class F>
BOOST_FORCEINLINE
size_t visit(FwdIterator first, FwdIterator last, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_BULK_VISIT_ITERATOR(FwdIterator)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(first, last, f);
}
template<class FwdIterator, class F>
BOOST_FORCEINLINE
size_t cvisit(FwdIterator first, FwdIterator last, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_BULK_VISIT_ITERATOR(FwdIterator)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit(first, last, f);
}
template <class F> size_type visit_all(F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit_all(f);
}
template <class F> size_type visit_all(F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit_all(f);
}
template <class F> size_type cvisit_all(F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.cvisit_all(f);
}
#if defined(BOOST_UNORDERED_PARALLEL_ALGORITHMS)
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
void>::type
visit_all(ExecPolicy&& p, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
table_.visit_all(p, f);
}
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
void>::type
visit_all(ExecPolicy&& p, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
table_.visit_all(p, f);
}
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
void>::type
cvisit_all(ExecPolicy&& p, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
table_.cvisit_all(p, f);
}
#endif
template <class F> bool visit_while(F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit_while(f);
}
template <class F> bool visit_while(F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.visit_while(f);
}
template <class F> bool cvisit_while(F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.cvisit_while(f);
}
#if defined(BOOST_UNORDERED_PARALLEL_ALGORITHMS)
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
bool>::type
visit_while(ExecPolicy&& p, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
return table_.visit_while(p, f);
}
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
bool>::type
visit_while(ExecPolicy&& p, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
return table_.visit_while(p, f);
}
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
bool>::type
cvisit_while(ExecPolicy&& p, F f) const
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
return table_.cvisit_while(p, f);
}
#endif
/// Modifiers
///
BOOST_FORCEINLINE bool insert(value_type const& obj)
{
return table_.insert(obj);
}
BOOST_FORCEINLINE bool insert(value_type&& obj)
{
return table_.insert(std::move(obj));
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value,
bool >::type
insert(K&& k)
{
return table_.try_emplace(std::forward<K>(k));
}
template <class InputIterator>
size_type insert(InputIterator begin, InputIterator end)
{
size_type count_elements = 0;
for (auto pos = begin; pos != end; ++pos, ++count_elements) {
table_.emplace(*pos);
}
return count_elements;
}
size_type insert(std::initializer_list<value_type> ilist)
{
return this->insert(ilist.begin(), ilist.end());
}
insert_return_type insert(node_type&& nh)
{
using access = detail::foa::node_handle_access;
if (nh.empty()) {
return {false, node_type{}};
}
// Caveat: get_allocator() incurs synchronization (not cheap)
BOOST_ASSERT(get_allocator() == nh.get_allocator());
if (table_.insert(std::move(access::element(nh)))) {
access::reset(nh);
return {true, node_type{}};
} else {
return {false, std::move(nh)};
}
}
template <class F>
BOOST_FORCEINLINE bool insert_or_visit(value_type const& obj, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.insert_or_visit(obj, f);
}
template <class F>
BOOST_FORCEINLINE bool insert_or_visit(value_type&& obj, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.insert_or_visit(std::move(obj), f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value,
bool >::type
insert_or_visit(K&& k, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.try_emplace_or_visit(std::forward<K>(k), f);
}
template <class InputIterator, class F>
size_type insert_or_visit(InputIterator first, InputIterator last, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
size_type count_elements = 0;
for (; first != last; ++first, ++count_elements) {
table_.emplace_or_visit(*first, f);
}
return count_elements;
}
template <class F>
size_type insert_or_visit(std::initializer_list<value_type> ilist, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return this->insert_or_visit(ilist.begin(), ilist.end(), std::ref(f));
}
template <class F>
insert_return_type insert_or_visit(node_type&& nh, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
using access = detail::foa::node_handle_access;
if (nh.empty()) {
return {false, node_type{}};
}
// Caveat: get_allocator() incurs synchronization (not cheap)
BOOST_ASSERT(get_allocator() == nh.get_allocator());
if (table_.insert_or_visit(std::move(access::element(nh)), f)) {
access::reset(nh);
return {true, node_type{}};
} else {
return {false, std::move(nh)};
}
}
template <class F>
BOOST_FORCEINLINE bool insert_or_cvisit(value_type const& obj, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.insert_or_cvisit(obj, f);
}
template <class F>
BOOST_FORCEINLINE bool insert_or_cvisit(value_type&& obj, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.insert_or_cvisit(std::move(obj), f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value,
bool >::type
insert_or_cvisit(K&& k, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return table_.try_emplace_or_cvisit(std::forward<K>(k), f);
}
template <class InputIterator, class F>
size_type insert_or_cvisit(InputIterator first, InputIterator last, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
size_type count_elements = 0;
for (; first != last; ++first, ++count_elements) {
table_.emplace_or_cvisit(*first, f);
}
return count_elements;
}
template <class F>
size_type insert_or_cvisit(std::initializer_list<value_type> ilist, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
return this->insert_or_cvisit(ilist.begin(), ilist.end(), std::ref(f));
}
template <class F>
insert_return_type insert_or_cvisit(node_type&& nh, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F)
using access = detail::foa::node_handle_access;
if (nh.empty()) {
return {false, node_type{}};
}
// Caveat: get_allocator() incurs synchronization (not cheap)
BOOST_ASSERT(get_allocator() == nh.get_allocator());
if (table_.insert_or_cvisit(std::move(access::element(nh)), f)) {
access::reset(nh);
return {true, node_type{}};
} else {
return {false, std::move(nh)};
}
}
template <class F1, class F2>
BOOST_FORCEINLINE bool insert_and_visit(
value_type const& obj, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.insert_and_visit(obj, f1, f2);
}
template <class F1, class F2>
BOOST_FORCEINLINE bool insert_and_visit(value_type&& obj, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.insert_and_visit(std::move(obj), f1, f2);
}
template <class K, class F1, class F2>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value,
bool >::type
insert_and_visit(K&& k, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.try_emplace_and_visit(std::forward<K>(k), f1, f2);
}
template <class InputIterator, class F1, class F2>
size_type insert_and_visit(
InputIterator first, InputIterator last, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
size_type count_elements = 0;
for (; first != last; ++first, ++count_elements) {
table_.emplace_and_visit(*first, f1, f2);
}
return count_elements;
}
template <class F1, class F2>
size_type insert_and_visit(
std::initializer_list<value_type> ilist, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return this->insert_and_visit(
ilist.begin(), ilist.end(), std::ref(f1), std::ref(f2));
}
template <class F1, class F2>
insert_return_type insert_and_visit(node_type&& nh, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
using access = detail::foa::node_handle_access;
if (nh.empty()) {
return {false, node_type{}};
}
// Caveat: get_allocator() incurs synchronization (not cheap)
BOOST_ASSERT(get_allocator() == nh.get_allocator());
if (table_.insert_and_visit(std::move(access::element(nh)), f1, f2)) {
access::reset(nh);
return {true, node_type{}};
} else {
return {false, std::move(nh)};
}
}
template <class F1, class F2>
BOOST_FORCEINLINE bool insert_and_cvisit(
value_type const& obj, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.insert_and_cvisit(obj, f1, f2);
}
template <class F1, class F2>
BOOST_FORCEINLINE bool insert_and_cvisit(value_type&& obj, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.insert_and_cvisit(std::move(obj), f1, f2);
}
template <class K, class F1, class F2>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value,
bool >::type
insert_and_cvisit(K&& k, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return table_.try_emplace_and_cvisit(std::forward<K>(k), f1, f2);
}
template <class InputIterator, class F1, class F2>
size_type insert_and_cvisit(
InputIterator first, InputIterator last, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
size_type count_elements = 0;
for (; first != last; ++first, ++count_elements) {
table_.emplace_and_cvisit(*first, f1, f2);
}
return count_elements;
}
template <class F1, class F2>
size_type insert_and_cvisit(
std::initializer_list<value_type> ilist, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
return this->insert_and_cvisit(
ilist.begin(), ilist.end(), std::ref(f1), std::ref(f2));
}
template <class F1, class F2>
insert_return_type insert_and_cvisit(node_type&& nh, F1 f1, F2 f2)
{
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F1)
BOOST_UNORDERED_STATIC_ASSERT_CONST_INVOCABLE(F2)
using access = detail::foa::node_handle_access;
if (nh.empty()) {
return {false, node_type{}};
}
// Caveat: get_allocator() incurs synchronization (not cheap)
BOOST_ASSERT(get_allocator() == nh.get_allocator());
if (table_.insert_and_cvisit(std::move(access::element(nh)), f1, f2)) {
access::reset(nh);
return {true, node_type{}};
} else {
return {false, std::move(nh)};
}
}
template <class... Args> BOOST_FORCEINLINE bool emplace(Args&&... args)
{
return table_.emplace(std::forward<Args>(args)...);
}
template <class Arg, class... Args>
BOOST_FORCEINLINE bool emplace_or_visit(Arg&& arg, Args&&... args)
{
BOOST_UNORDERED_STATIC_ASSERT_LAST_ARG_CONST_INVOCABLE(Arg, Args...)
return table_.emplace_or_visit(
std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <class Arg, class... Args>
BOOST_FORCEINLINE bool emplace_or_cvisit(Arg&& arg, Args&&... args)
{
BOOST_UNORDERED_STATIC_ASSERT_LAST_ARG_CONST_INVOCABLE(Arg, Args...)
return table_.emplace_or_cvisit(
std::forward<Arg>(arg), std::forward<Args>(args)...);
}
template <class Arg1, class Arg2, class... Args>
BOOST_FORCEINLINE bool emplace_and_visit(
Arg1&& arg1, Arg2&& arg2, Args&&... args)
{
BOOST_UNORDERED_STATIC_ASSERT_PENULTIMATE_ARG_CONST_INVOCABLE(
Arg1, Arg2, Args...)
BOOST_UNORDERED_STATIC_ASSERT_LAST_ARG_CONST_INVOCABLE(Arg2, Args...)
return table_.emplace_and_visit(
std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Args>(args)...);
}
template <class Arg1, class Arg2, class... Args>
BOOST_FORCEINLINE bool emplace_and_cvisit(
Arg1&& arg1, Arg2&& arg2, Args&&... args)
{
BOOST_UNORDERED_STATIC_ASSERT_PENULTIMATE_ARG_CONST_INVOCABLE(
Arg1, Arg2, Args...)
BOOST_UNORDERED_STATIC_ASSERT_LAST_ARG_CONST_INVOCABLE(Arg2, Args...)
return table_.emplace_and_cvisit(
std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
std::forward<Args>(args)...);
}
BOOST_FORCEINLINE size_type erase(key_type const& k)
{
return table_.erase(k);
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, size_type>::type
erase(K&& k)
{
return table_.erase(std::forward<K>(k));
}
template <class F>
BOOST_FORCEINLINE size_type erase_if(key_type const& k, F f)
{
return table_.erase_if(k, f);
}
template <class K, class F>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value &&
!detail::is_execution_policy<K>::value,
size_type>::type
erase_if(K&& k, F f)
{
return table_.erase_if(std::forward<K>(k), f);
}
#if defined(BOOST_UNORDERED_PARALLEL_ALGORITHMS)
template <class ExecPolicy, class F>
typename std::enable_if<detail::is_execution_policy<ExecPolicy>::value,
void>::type
erase_if(ExecPolicy&& p, F f)
{
BOOST_UNORDERED_STATIC_ASSERT_EXEC_POLICY(ExecPolicy)
table_.erase_if(p, f);
}
#endif
template <class F> size_type erase_if(F f) { return table_.erase_if(f); }
void swap(concurrent_node_set& other) noexcept(
boost::allocator_is_always_equal<Allocator>::type::value ||
boost::allocator_propagate_on_container_swap<Allocator>::type::value)
{
return table_.swap(other.table_);
}
node_type extract(key_type const& key)
{
node_type nh;
table_.extract(key, detail::foa::node_handle_emplacer(nh));
return nh;
}
template <class K>
typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, node_type>::type
extract(K const& key)
{
node_type nh;
table_.extract(key, detail::foa::node_handle_emplacer(nh));
return nh;
}
template <class F>
node_type extract_if(key_type const& key, F f)
{
node_type nh;
table_.extract_if(key, f, detail::foa::node_handle_emplacer(nh));
return nh;
}
template <class K, class F>
typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, node_type>::type
extract_if(K const& key, F f)
{
node_type nh;
table_.extract_if(key, f, detail::foa::node_handle_emplacer(nh));
return nh;
}
void clear() noexcept { table_.clear(); }
template <typename H2, typename P2>
size_type merge(concurrent_node_set<Key, H2, P2, Allocator>& x)
{
BOOST_ASSERT(get_allocator() == x.get_allocator());
return table_.merge(x.table_);
}
template <typename H2, typename P2>
size_type merge(concurrent_node_set<Key, H2, P2, Allocator>&& x)
{
return merge(x);
}
BOOST_FORCEINLINE size_type count(key_type const& k) const
{
return table_.count(k);
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, size_type>::type
count(K const& k)
{
return table_.count(k);
}
BOOST_FORCEINLINE bool contains(key_type const& k) const
{
return table_.contains(k);
}
template <class K>
BOOST_FORCEINLINE typename std::enable_if<
detail::are_transparent<K, hasher, key_equal>::value, bool>::type
contains(K const& k) const
{
return table_.contains(k);
}
/// Hash Policy
///
size_type bucket_count() const noexcept { return table_.capacity(); }
float load_factor() const noexcept { return table_.load_factor(); }
float max_load_factor() const noexcept
{
return table_.max_load_factor();
}
void max_load_factor(float) {}
size_type max_load() const noexcept { return table_.max_load(); }
void rehash(size_type n) { table_.rehash(n); }
void reserve(size_type n) { table_.reserve(n); }
#if defined(BOOST_UNORDERED_ENABLE_STATS)
/// Stats
///
stats get_stats() const { return table_.get_stats(); }
void reset_stats() noexcept { table_.reset_stats(); }
#endif
/// Observers
///
allocator_type get_allocator() const noexcept
{
return table_.get_allocator();
}
hasher hash_function() const { return table_.hash_function(); }
key_equal key_eq() const { return table_.key_eq(); }
};
template <class Key, class Hash, class KeyEqual, class Allocator>
bool operator==(
concurrent_node_set<Key, Hash, KeyEqual, Allocator> const& lhs,
concurrent_node_set<Key, Hash, KeyEqual, Allocator> const& rhs)
{
return lhs.table_ == rhs.table_;
}
template <class Key, class Hash, class KeyEqual, class Allocator>
bool operator!=(
concurrent_node_set<Key, Hash, KeyEqual, Allocator> const& lhs,
concurrent_node_set<Key, Hash, KeyEqual, Allocator> const& rhs)
{
return !(lhs == rhs);
}
template <class Key, class Hash, class Pred, class Alloc>
void swap(concurrent_node_set<Key, Hash, Pred, Alloc>& x,
concurrent_node_set<Key, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)))
{
x.swap(y);
}
template <class K, class H, class P, class A, class Predicate>
typename concurrent_node_set<K, H, P, A>::size_type erase_if(
concurrent_node_set<K, H, P, A>& c, Predicate pred)
{
return c.table_.erase_if(pred);
}
template<class Archive, class K, class H, class KE, class A>
void serialize(
Archive& ar, concurrent_node_set<K, H, KE, A>& c, unsigned int)
{
ar & core::make_nvp("table",c.table_);
}
#if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES
template <class InputIterator,
class Hash =
boost::hash<typename std::iterator_traits<InputIterator>::value_type>,
class Pred =
std::equal_to<typename std::iterator_traits<InputIterator>::value_type>,
class Allocator = std::allocator<
typename std::iterator_traits<InputIterator>::value_type>,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(InputIterator, InputIterator,
std::size_t = boost::unordered::detail::foa::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> concurrent_node_set<
typename std::iterator_traits<InputIterator>::value_type, Hash, Pred,
Allocator>;
template <class T, class Hash = boost::hash<T>,
class Pred = std::equal_to<T>, class Allocator = std::allocator<T>,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(std::initializer_list<T>,
std::size_t = boost::unordered::detail::foa::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> concurrent_node_set< T, Hash, Pred, Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(InputIterator, InputIterator, std::size_t, Allocator)
-> concurrent_node_set<
typename std::iterator_traits<InputIterator>::value_type,
boost::hash<typename std::iterator_traits<InputIterator>::value_type>,
std::equal_to<typename std::iterator_traits<InputIterator>::value_type>,
Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(InputIterator, InputIterator, Allocator)
-> concurrent_node_set<
typename std::iterator_traits<InputIterator>::value_type,
boost::hash<typename std::iterator_traits<InputIterator>::value_type>,
std::equal_to<typename std::iterator_traits<InputIterator>::value_type>,
Allocator>;
template <class InputIterator, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(
InputIterator, InputIterator, std::size_t, Hash, Allocator)
-> concurrent_node_set<
typename std::iterator_traits<InputIterator>::value_type, Hash,
std::equal_to<typename std::iterator_traits<InputIterator>::value_type>,
Allocator>;
template <class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(std::initializer_list<T>, std::size_t, Allocator)
-> concurrent_node_set<T, boost::hash<T>,std::equal_to<T>, Allocator>;
template <class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(std::initializer_list<T >, Allocator)
-> concurrent_node_set<T, boost::hash<T>, std::equal_to<T>, Allocator>;
template <class T, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
concurrent_node_set(std::initializer_list<T >, std::size_t,Hash, Allocator)
-> concurrent_node_set<T, Hash, std::equal_to<T>, Allocator>;
#endif
} // namespace unordered
} // namespace boost
#endif // BOOST_UNORDERED_CONCURRENT_NODE_SET_HPP