boost/heap/priority_queue.hpp
// boost heap: wrapper for stl heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HEAP_PRIORITY_QUEUE_HPP
#define BOOST_HEAP_PRIORITY_QUEUE_HPP
#include <algorithm>
#include <utility>
#include <vector>
#include <boost/assert.hpp>
#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
# pragma once
#endif
namespace boost { namespace heap {
namespace detail {
typedef parameter::parameters< boost::parameter::optional< tag::allocator >,
boost::parameter::optional< tag::compare >,
boost::parameter::optional< tag::stable >,
boost::parameter::optional< tag::stability_counter_type > >
priority_queue_signature;
} // namespace detail
/**
* \class priority_queue
* \brief priority queue, based on stl heap functions
*
* The priority_queue class is a wrapper for the stl heap functions.<br>
* The template parameter T is the type to be managed by the container.
* The user can specify additional options and if no options are provided default options are used.
*
* The container supports the following options:
* - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
* - \c boost::heap::stable<>, defaults to \c stable<false>
* - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
* - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
*
*/
#ifdef BOOST_DOXYGEN_INVOKED
template < class T, class... Options >
#else
template < typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_,
class A3 = boost::parameter::void_ >
#endif
class priority_queue :
private detail::make_heap_base< T, typename detail::priority_queue_signature::bind< A0, A1, A2, A3 >::type, false >::type
{
typedef detail::make_heap_base< T, typename detail::priority_queue_signature::bind< A0, A1, A2, A3 >::type, false >
heap_base_maker;
typedef typename heap_base_maker::type super_t;
typedef typename super_t::internal_type internal_type;
typedef typename boost::allocator_rebind< typename heap_base_maker::allocator_argument, internal_type >::type
internal_type_allocator;
typedef std::vector< internal_type, internal_type_allocator > container_type;
template < typename Heap1, typename Heap2 >
friend struct detail::heap_merge_emulate;
container_type q_;
#ifndef BOOST_DOXYGEN_INVOKED
struct implementation_defined : detail::extract_allocator_types< typename heap_base_maker::allocator_argument >
{
typedef typename heap_base_maker::compare_argument value_compare;
typedef detail::stable_heap_iterator< T, typename container_type::const_iterator, super_t > iterator;
typedef iterator const_iterator;
typedef typename container_type::allocator_type allocator_type;
};
#endif
public:
typedef T value_type;
typedef typename implementation_defined::size_type size_type;
typedef typename implementation_defined::difference_type difference_type;
typedef typename implementation_defined::value_compare value_compare;
typedef typename implementation_defined::allocator_type allocator_type;
typedef typename implementation_defined::reference reference;
typedef typename implementation_defined::const_reference const_reference;
typedef typename implementation_defined::pointer pointer;
typedef typename implementation_defined::const_pointer const_pointer;
/**
* \b Note: The iterator does not traverse the priority queue in order of the priorities.
* */
typedef typename implementation_defined::iterator iterator;
typedef typename implementation_defined::const_iterator const_iterator;
static const bool constant_time_size = true;
static const bool has_ordered_iterators = false;
static const bool is_mergable = false;
static const bool is_stable = heap_base_maker::is_stable;
static const bool has_reserve = true;
/**
* \b Effects: constructs an empty priority queue.
*
* \b Complexity: Constant.
*
* */
explicit priority_queue( value_compare const& cmp = value_compare() ) :
super_t( cmp )
{}
/**
* \b Effects: constructs an empty priority queue.
*
* \b Complexity: Constant.
*
* */
explicit priority_queue( allocator_type const& alloc ) :
q_( alloc )
{}
/**
* \b Effects: copy-constructs priority queue from rhs.
*
* \b Complexity: Linear.
*
* */
priority_queue( priority_queue const& rhs ) :
super_t( rhs ),
q_( rhs.q_ )
{}
/**
* \b Effects: C++11-style move constructor.
*
* \b Complexity: Constant.
*
* */
priority_queue( priority_queue&& rhs ) noexcept( std::is_nothrow_move_constructible< super_t >::value ) :
super_t( std::move( rhs ) ),
q_( std::move( rhs.q_ ) )
{}
/**
* \b Effects: C++11-style move assignment.
*
* \b Complexity: Constant.
*
* */
priority_queue& operator=( priority_queue&& rhs ) noexcept( std::is_nothrow_move_assignable< super_t >::value )
{
super_t::operator=( std::move( rhs ) );
q_ = std::move( rhs.q_ );
return *this;
}
/**
* \b Effects: Assigns priority queue from rhs.
*
* \b Complexity: Linear.
*
* */
priority_queue& operator=( priority_queue const& rhs )
{
static_cast< super_t& >( *this ) = static_cast< super_t const& >( rhs );
q_ = rhs.q_;
return *this;
}
/**
* \b Effects: Returns true, if the priority queue contains no elements.
*
* \b Complexity: Constant.
*
* */
bool empty( void ) const noexcept
{
return q_.empty();
}
/**
* \b Effects: Returns the number of elements contained in the priority queue.
*
* \b Complexity: Constant.
*
* */
size_type size( void ) const noexcept
{
return q_.size();
}
/**
* \b Effects: Returns the maximum number of elements the priority queue can contain.
*
* \b Complexity: Constant.
*
* */
size_type max_size( void ) const noexcept
{
return q_.max_size();
}
/**
* \b Effects: Removes all elements from the priority queue.
*
* \b Complexity: Linear.
*
* */
void clear( void ) noexcept
{
q_.clear();
}
/**
* \b Effects: Returns allocator.
*
* \b Complexity: Constant.
*
* */
allocator_type get_allocator( void ) const
{
return q_.get_allocator();
}
/**
* \b Effects: Returns a const_reference to the maximum element.
*
* \b Complexity: Constant.
*
* */
const_reference top( void ) const
{
BOOST_ASSERT( !empty() );
return super_t::get_value( q_.front() );
}
/**
* \b Effects: Adds a new element to the priority queue.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
void push( value_type const& v )
{
q_.push_back( super_t::make_node( v ) );
std::push_heap( q_.begin(), q_.end(), static_cast< super_t const& >( *this ) );
}
/**
* \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
template < class... Args >
void emplace( Args&&... args )
{
q_.emplace_back( super_t::make_node( std::forward< Args >( args )... ) );
std::push_heap( q_.begin(), q_.end(), static_cast< super_t const& >( *this ) );
}
/**
* \b Effects: Removes the top element from the priority queue.
*
* \b Complexity: Logarithmic (amortized). Linear (worst case).
*
* */
void pop( void )
{
BOOST_ASSERT( !empty() );
std::pop_heap( q_.begin(), q_.end(), static_cast< super_t const& >( *this ) );
q_.pop_back();
}
/**
* \b Effects: Swaps two priority queues.
*
* \b Complexity: Constant.
*
* */
void swap( priority_queue& rhs ) noexcept( std::is_nothrow_move_constructible< super_t >::value
&& std::is_nothrow_move_assignable< super_t >::value )
{
super_t::swap( rhs );
q_.swap( rhs.q_ );
}
/**
* \b Effects: Returns an iterator to the first element contained in the priority queue.
*
* \b Complexity: Constant.
*
* */
iterator begin( void ) const noexcept
{
return iterator( q_.begin() );
}
/**
* \b Effects: Returns an iterator to the end of the priority queue.
*
* \b Complexity: Constant.
*
* */
iterator end( void ) const noexcept
{
return iterator( q_.end() );
}
/**
* \b Effects: Reserves memory for element_count elements
*
* \b Complexity: Linear.
*
* \b Node: Invalidates iterators
*
* */
void reserve( size_type element_count )
{
q_.reserve( element_count );
}
/**
* \b Effect: Returns the value_compare object used by the priority queue
*
* */
value_compare const& value_comp( void ) const
{
return super_t::value_comp();
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator<( HeapType const& rhs ) const
{
return detail::heap_compare( *this, rhs );
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator>( HeapType const& rhs ) const
{
return detail::heap_compare( rhs, *this );
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator>=( HeapType const& rhs ) const
{
return !operator<( rhs );
}
/**
* \b Returns: Element-wise comparison of heap data structures
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator<=( HeapType const& rhs ) const
{
return !operator>( rhs );
}
/** \brief Equivalent comparison
* \b Returns: True, if both heap data structures are equivalent.
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator==( HeapType const& rhs ) const
{
return detail::heap_equality( *this, rhs );
}
/** \brief Equivalent comparison
* \b Returns: True, if both heap data structures are not equivalent.
*
* \b Requirement: the \c value_compare object of both heaps must match.
*
* */
template < typename HeapType >
bool operator!=( HeapType const& rhs ) const
{
return !( *this == rhs );
}
};
}} // namespace boost::heap
#endif /* BOOST_HEAP_PRIORITY_QUEUE_HPP */