boost/math/special_functions/cbrt.hpp
// (C) Copyright John Maddock 2006.
// (C) Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SF_CBRT_HPP
#define BOOST_MATH_SF_CBRT_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/config.hpp>
#ifndef BOOST_MATH_HAS_NVRTC
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/type_traits.hpp>
#include <boost/math/tools/cstdint.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
namespace boost{ namespace math{
namespace detail
{
struct big_int_type
{
operator std::uintmax_t() const;
};
template <typename T>
struct largest_cbrt_int_type
{
using type = typename std::conditional<
std::is_convertible<big_int_type, T>::value,
std::uintmax_t,
unsigned int
>::type;
};
template <typename T, typename Policy>
BOOST_MATH_GPU_ENABLED T cbrt_imp(T z, const Policy& pol)
{
BOOST_MATH_STD_USING
//
// cbrt approximation for z in the range [0.5,1]
// It's hard to say what number of terms gives the optimum
// trade off between precision and performance, this seems
// to be about the best for double precision.
//
// Maximum Deviation Found: 1.231e-006
// Expected Error Term: -1.231e-006
// Maximum Relative Change in Control Points: 5.982e-004
//
BOOST_MATH_STATIC const T P[] = {
static_cast<T>(0.37568269008611818),
static_cast<T>(1.3304968705558024),
static_cast<T>(-1.4897101632445036),
static_cast<T>(1.2875573098219835),
static_cast<T>(-0.6398703759826468),
static_cast<T>(0.13584489959258635),
};
BOOST_MATH_STATIC const T correction[] = {
static_cast<T>(0.62996052494743658238360530363911), // 2^-2/3
static_cast<T>(0.79370052598409973737585281963615), // 2^-1/3
static_cast<T>(1),
static_cast<T>(1.2599210498948731647672106072782), // 2^1/3
static_cast<T>(1.5874010519681994747517056392723), // 2^2/3
};
if((boost::math::isinf)(z) || (z == 0))
return z;
if(!(boost::math::isfinite)(z))
{
return policies::raise_domain_error("boost::math::cbrt<%1%>(%1%)", "Argument to function must be finite but got %1%.", z, pol);
}
int i_exp, sign(1);
if(z < 0)
{
z = -z;
sign = -sign;
}
T guess = frexp(z, &i_exp);
int original_i_exp = i_exp; // save for later
guess = tools::evaluate_polynomial(P, guess);
int i_exp3 = i_exp / 3;
using shift_type = typename largest_cbrt_int_type<T>::type;
static_assert( ::std::numeric_limits<shift_type>::radix == 2, "The radix of the type to shift to must be 2.");
if(abs(i_exp3) < std::numeric_limits<shift_type>::digits)
{
if(i_exp3 > 0)
guess *= shift_type(1u) << i_exp3;
else
guess /= shift_type(1u) << -i_exp3;
}
else
{
guess = ldexp(guess, i_exp3);
}
i_exp %= 3;
guess *= correction[i_exp + 2];
//
// Now inline Halley iteration.
// We do this here rather than calling tools::halley_iterate since we can
// simplify the expressions algebraically, and don't need most of the error
// checking of the boilerplate version as we know in advance that the function
// is well behaved...
//
using prec = typename policies::precision<T, Policy>::type;
constexpr auto prec3 = prec::value / 3;
constexpr auto new_prec = prec3 + 3;
using new_policy = typename policies::normalise<Policy, policies::digits2<new_prec>>::type;
//
// Epsilon calculation uses compile time arithmetic when it's available for type T,
// otherwise uses ldexp to calculate at runtime:
//
T eps = (new_prec > 3) ? policies::get_epsilon<T, new_policy>() : ldexp(T(1), -2 - tools::digits<T>() / 3);
T diff;
if(original_i_exp < std::numeric_limits<T>::max_exponent - 3)
{
//
// Safe from overflow, use the fast method:
//
do
{
T g3 = guess * guess * guess;
diff = (g3 + z + z) / (g3 + g3 + z);
guess *= diff;
}
while(fabs(1 - diff) > eps);
}
else
{
//
// Either we're ready to overflow, or we can't tell because numeric_limits isn't
// available for type T:
//
do
{
T g2 = guess * guess;
diff = (g2 - z / guess) / (2 * guess + z / g2);
guess -= diff;
}
while((guess * eps) < fabs(diff));
}
return sign * guess;
}
} // namespace detail
template <typename T, typename Policy>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type cbrt(T z, const Policy& pol)
{
using result_type = typename tools::promote_args<T>::type;
using value_type = typename policies::evaluation<result_type, Policy>::type;
return static_cast<result_type>(detail::cbrt_imp(value_type(z), pol));
}
template <typename T>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type cbrt(T z)
{
return cbrt(z, policies::policy<>());
}
} // namespace math
} // namespace boost
#else // Special NVRTC handling
namespace boost {
namespace math {
template <typename T>
BOOST_MATH_GPU_ENABLED double cbrt(T x)
{
return ::cbrt(x);
}
BOOST_MATH_GPU_ENABLED inline float cbrt(float x)
{
return ::cbrtf(x);
}
template <typename T, typename Policy>
BOOST_MATH_GPU_ENABLED double cbrt(T x, const Policy&)
{
return ::cbrt(x);
}
template <typename Policy>
BOOST_MATH_GPU_ENABLED float cbrt(float x, const Policy&)
{
return ::cbrtf(x);
}
} // namespace math
} // namespace boost
#endif // NVRTC
#endif // BOOST_MATH_SF_CBRT_HPP